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Abstract

Interactive TV/arcade games have been entertaining
people for over 50 years. Nowadays a large number of
legacy TV/arcade games have been ported to new platforms
such as PCs by emulation. However, they generally require
that the players be co-located to interact with one computer
that emulates the game. This paper proposes a novel ap-
proach to turning those single-computer games into multi-
computer games such that multiple players can play their
favorite legacy games in real time over a computer network.
The main challenge in this work is how to synchronize mul-
tiple replicas of a game without semantic knowledge about
or modifications to the game. We present the approach, es-
pecially the synchronization algorithm, and evaluate its ef-
fectiveness under a variety of network conditions. In future
research we will extend this work on mobile devices.

1. Introduction

Interactive TV and arcade games have a long history
which can be traced back to Tennis for Two in 1958. Since
then gaming has grown into a significant part of the enter-
tainment industry. Over the recent two decades alone, hun-
dreds of millions of TV/arcade game consoles have been de-
ployed. Thanks to modern software techniques such as vir-
tual machines (VMs), now we can also play TV and arcade
games on personal computers. A large number of game
platforms can be emulated on PCs, such as FC,1 SFC,2 Nin-
tendo 64, MD,3 and PS.4 In principle, all games developed
for a platform can be played on PCs if there is a VM for
that platform. The number of games that can be emulated
has already reached over tens of thousands according to in-
complete statistics from the Internet. 5

1Famicom http://en.wikipedia.org/wiki/Nintendo Entertainment System
2Super Famicom http://en.wikipedia.org/wiki/Super Family Computer
3Mega Drive http://en.wikipedia.org/wiki/Megadrive
4Play Station http://en.wikipedia.org/wiki/Play Station
5http://www.allgoodthings.us

However, in general, existing game VMs to the best of
our knowledge require that players of an emulated game be
co-located. The players usually use different input devices
to interact with the same computer that emulates the game.
This requirement is not necessarily a limitation in situations
where the players can get together conveniently. Neverthe-
less, it could have been relaxed with modern collaboration
technologies so that people can play their favorite games in
real time without having to be physically co-located.

In this paper, we present a novel technique that can turn
single-machine TV/arcade games into distributed multi-
user games that can be played by multiple users over a com-
puter network. The approach, called real-time collabora-
tion transparency, extends the (single-computer) game vir-
tual machines with a novel consistency control algorithm
such that replicas of the extended VMs running on different
computers can be synchronized in real time. The approach
is “game transparent” as it does not need to modify the
games themselves nor acquire semantic knowledge about
their workings. As a result, the myriad of legacy TV/arcade
games can be automatically turned into distributed games
once their VMs are extended with our approach.

The technical challenge in our approach is mainly that
the distributed game VM not only has to guarantee con-
vergence of data replicas but also has to achieve it in real
time and, moreover, must be transparent to the original
games. By comparison, TV/arcade games and their single-
computer emulations do not need to consider synchro-
nization; traditional collaboration transparency approaches,
e.g., [1, 6, 7, 8, 14], which aim to convert single-user soft-
ware applications into multi-user applications without mod-
ifying source code, in general do not have the real-time con-
straint; specialized multi-player games, e.g., [4, 5, 12, 9, 3],
on the other hand, do not have the “game transparency” con-
straint and hence their synchronization techniques in gen-
eral cannot be applied in this context.

The rest of this paper is as follows. Section 2 overviews
the system design. Section 3 presents the synchronization
algorithm. Section 4 discusses performance experiments.
Section 5 compares related research. Section 6 concludes.

2009 29th IEEE International Conference on Distributed Computing Systems

1063-6927/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDCS.2009.26

165



2. Overview of System

Most TV/arcade games to our knowledge only allow for
two players. Therefore our system and the synchronization
algorithm assume two sites in this paper. Suppose that two
users want to play a TV/arcade game on two networked
computers. They must install our extended VM and the
same game image. Some rendezvous mechanism is required
for them to find each other, such as instant messenger and
games lobby. Then a UDP-based communication channel
will be established. After that, the game image is loaded
onto the two VMs and the users can use the input devices
on their own computers to play the same game together.

Our extended VM inherits the original virtual modules
that emulate hardware behavior of the source TV/arcade
platform, such as virtual audio/video, input devices, CPU,
and memory. They are driven by user inputs to perform
state transitions and generate source platform dependent au-
dio/video outputs. The VM translates the game outputs
into target platform dependent outputs to the physical au-
dio/video devices and present them to the players. The input
module reads user inputs from input devices on the target
platform and feeds them to the virtual input module.

These modules are reused in our system. We introduce a
new sync module that implements logical consistency and
real-time consistency, as will be presented in detail in the
next section. In the original VM, the user inputs are com-
mitted directly to the virtual input module, whereas in our
work inputs from different sites must be synchronized first
before they are committed so as to achieve consistency.

Most open-source game VMs to our knowledge can be
extended with minor modifications. For example, our sys-
tem is adapted from the MAME virtual machine source
code. 6 The two new modules take only about 800 lines
of C code in total. Therefore, due to its simplicity, we will
not go into further details of the system implementation.
Instead, we will focus on the critical logical and real-time
consistency control algorithms underlying the sync module.

Algorithm 1 gives the pseudo code of how our distributed
game virtual machine works. It is the same as its single-
machine version except the three underlined steps 5, 7, and
10. These three steps implement synchronization in our
work. When there are two sites, the same initial state S
is replicated. Inputs are obtained at the two sites (step 6),
respectively, and merged (step 7) before fed into the game
(step 8). The main idea for achieving logical consistency
is local lag [9], i.e., the local inputs are buffered until re-
mote inputs to the same frame are received and then they
are passed to the game together (step 7). The main idea for
achieving real-time consistency is to synchronize the pace
of every frame (steps 5 and 10 combined).

6http://mamedev.org/

Algorithm 1 Pseudocode of distributed VM
1: var State S = initial state;
2: var Input I = 0;
3: var Integer Frame = 0;
4: repeat
5: BeginFrameTiming();
6: I = GetInput();
7: I′ = SyncInput(I, Frame);
8: S ′ = Transition(I′, S );
9: translate and present S ′;

10: EndFrameTiming();
11: Frame + + ;
12: until end of game;

In the step of S ′ = Transition(I, S ), the game itself makes
a state transition based on its current state S and the sup-
plied input I. Notation S ′ is just another view of S which
could be assigned to S . It is worth noting that state transi-
tion is a black box to this work. We do not seek to modify
the game behavior nor sneak into the game itself to figure
out how it works. The game will not be aware of fact it is
played on multiple computers connected by a digital net-
work. That is, our work is “transparent” to the game, and
the game is also transparent to the extended VM.

3. The Synchronization Algorithm

For multiple players to play the same game, it is criti-
cal to maintain consistency between replicated states at all
involved sites. Consistency maintenance in this context in-
cludes two aspects: logical consistency and real-time con-
sistency. Traditional distributed systems in general only en-
sure logical consistency, or convergence of states. In ad-
dition to the requirement for convergence, multimedia col-
laboration systems, such as multiplayer online games, of-
ten need to ensure real-time consistency, i.e., different sites
must produce the same sequence of output states and reach
each state within some human-tolerable bound.

For convenience of discussions, we extend the variables
in Algorithm 1 as follows: Frame[k] denotes the current
frame at site k; I[k, f ] denotes site k’s input to frame f ; and
S[k, f ] denotes site k’s state corresponding to frame f . In a
distributed VM, one site only contributes a portion of input
variable I; we view the input as a binary string, in which
different sites control different bits of the string. Notation
SET[k] maps site k to the set of bits it controls. For any
two different sites j and k, SET[j] ∩ SET[k] = {}. Notation
I[ j, f ](SET[k]) denotes site k’s bits in the input to frame f
at site j. The bits that are not controlled by any sites are
mapped to SET[-1] and ignored in processing.

We assume that the original game VM is deterministic,
i.e., with the same initial state and same input sequence,
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the VM always produce the same sequence of output states.
Under this assumption, consider a system with two sites that
start from the same initial state. For every frame, if the two
sites have the same partial input from each other site, the
VM always produce the same sequence of output states.

This is the condition for logical consistency. If this con-
dition is satisfied, the VM will produce the same sequence
of output states and the same final state at all sites in the
system. In order to achieve so, the sites need to exchange
partial inputs. In a simplest scheme, each site broadcasts its
partial inputs to all other sites, and integrates all received
partial inputs to every frame. Then the integrated inputs are
fed to the frame. To ensure the same inputs to every frame,
each site must delay the execution of its local inputs until
all partial inputs to that frame are received.

The idea of delaying the execution of local inputs is
called “local lag”, which trades off local responsiveness
temporarily to mitigate inconsistencies across sites [9]. In-
tuitively, local lag must be a small value because a human
player usually expects to see the effects of her own inputs
in a short time. It has long been established in the HCI field
that local response time should not go beyond 100 ms [13].
Interestingly, studies of distributed multimedia systems also
reveal that, to achieve desirable interactivity, end-to-end de-
lay should not go beyond 100 ms [4, 10, 11].

Therefore, we recommend that our system, or any
system that takes a similar approach to sharing legacy
TV/arcade games, should be used in networking environ-
ments with one-way latencies no longer than 100 ms. Here
we emphasize one-way latencies because it takes at least
a single trip for a partial input to arrive at a remote site.
Note, however, that 100ms is a subjective order of magni-
tude rather than definitive value, which may vary with play-
ers and other conditions [4, 10, 11, 13].

3.1. Algorithm for Logical Consistency

To achieve logical consistency, we replicate the game
image to ensure that the VMs start from the same inital
state; our logical consistency control algorithm ensures the
same input to every frame. Over a packet-switching net-
work, there are problems such as packet loss, packet dis-
order, and packet duplication. As a reliable transport, TCP
solves those problems. However, it is problematic in sat-
isfying the real time constraint. Therefore, like in many
other realtime applications, we resort to UDP and imple-
ment some of the reliability mechanisms in TCP.

As in Algorithm 1, we ensure the same input condition
in function I′ = SyncInput(I, F), where I is the local input
on frame F and I′ is the synchronized input on frame F that
combines the local and remote inputs on the same frame.
Algorithm 2 shows the pseudocode of SyncInput. In this
paper, we assume there are only two sites in our system.

The algorithm defines the following five constants.

• MySiteNo: the local site number, 0 or 1.
• RmSiteNo: the remote site number, 0 or 1.
• MySET: the local input bits SET[MySiteNo].
• RmSET: the remote input bits SET[RmSiteNo].
• BufFrame: the local lag value (number of frames).

The algorithm uses the following four global variables.

• IBuf: the input buffer (array), all elements initialized
to zero. IBuf[ f ](SET[i]) denotes the partial input of
site i for frame f . A buffer of unlimited size is assumed
here for simplicity in presentation.
• IBufPointer: initialized to zero, the pointer points to

the element in IBuf that should be returned from cur-
rent call to the SyncInput algorithm.
• LastAckFrame: a two-element array with both

elements initialized to (BufFrame-1). LastAck-
Frame[MySiteNo] is not used in a two-site algorithm.
LastAckFrame[RmSiteNo] is the frame number of the
last local partial input that has been acknowledged by
the remote site. This suggests that the remote site has
successfully received all my partial inputs up to frame
LastAckFrame[RmSiteNo].
• LastRcvFrame: a two-element array with both ele-

ments initialized to (BufFrame-1). LastRcvFrame[i] is
the last frame up to which the partial inputs from site
i have been received and filled into IBuf. An element
of IBuf is delivered by SyncInput only when partial in-
puts from both sites have been received for that frame.

In Algorithm 2, lines 1-5 buffer the local partial inputs I.
When I for frame F is received, it is delayed by Bu f Frame
frames. The number is calculated to match the local lag time
of around 100 ms. If the expected frame rate is 60 FPS, 7 or
16.7 ms per frame, Bu f Frame can be set as 6. Hence the
local input is added to the input buffer for frame LagF = F +
6 instead of that for frame F. Since the SyncInput algorithm
is called for every frame, F = 0, 1, 2, ..., the local partial
inputs are added into IBu f continuously but with the first 6
frames skipped. That is, the players will not see effects of
their inputs until after the first 6 frames or 100 ms.

The loop of lines 6-21 can be divided into two parts. The
first is to send a sync message sd to the remote site (lines
7-11) and the second is to receive a sync message rc from
the remote site (lines 12-20). Message sd is to notify the
remote site of local partial inputs (sd[3...]) that have not
been acknowledged and to acknowledge receipt of remote
partial inputs up to some frame (sd[0]). Accordingly, when
a remote message rc is received, the received remote partial
inputs are extracted to update local input buffer (line 13);
the LastRcvFrame variable is updated (lines 14-16), and so
is the LastAckFrame variable (lines 17-19).

7This is because most arcade games to our knowledge are 60 FPS.
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Algorithm 2 Pseudocode of SyncInput(I, F)
1: var Integer LagF = F + BufFrame;
2: if LastRcvFrame[MySiteNo] < LagF then
3: IBuf[LagF](MySET) = I(MySET);
4: LastRcvFrame[MySiteNo] = LagF;
5: end if
6: repeat
7: send message sd to remote site if new info exists:
8: sd[0] = LastRcvFrame[RmSiteNo],
9: sd[1] = LastAckFrame[RmSiteNo]+1,

10: sd[2] = LastRcvFrame[MySiteNo],
11: sd[3 . . .] = IBuf[sd[1]](MySET)

. . . IBuf[sd[2]](MySET);
12: if received message rc from remote site then
13: Update IBuf[rc[1]](RmSET). . . IBuf[rc[2]](RmSET)

by received remote partial inputs rc[3 . . .];
14: if rc[2] > LastRcvFrame[RmSiteNo] then
15: LastRcvFrame[RmSiteNo] = rc[2];
16: end if
17: if rc[0] > LastAckFrame[RmSiteNo] then
18: LastAckFrame[RmSiteNo] = rc[0];
19: end if
20: end if
21: until LastRcvFrame[RmSiteNo] ≥ IBufPointer
22: IBufPointer++ ;
23: return IBuf [IBufPointer-1];

The loop exit condition in line 21 is to ensure that the
current input variable will not be returned until the remote
input for the same frame has been received. Hence all in-
puts to one frame are executed before proceeding to the next
frame. This way the same input sequence is achieved at both
sites. Implicitly, the causal ordering of input events are also
maintained. As a result, the same sequence of output states
as well as the same final state are produced at both sites.

Note that, for the first six frames, the exit condition is
trivially satisfied and empty inputs are returned. When F=6,
if the remote partial inputs to the actual first frame is re-
ceived (or those to the first few frames are received), LastR-
cvFrame[RmSiteNo] ≥ 6 must hold, then the exit condition
is satisfied and the (complete) input to the actual first frame
is returned; otherwise, LastRcvFrame[RmSiteNo] would
remain in its initial value 5 and the loop would not exit.

When partial input to some frame of one site is lost in
transmission, acknowledgement to that frame will not be
received by the other site. Hence it will be re-transmitted as
implied in lines 7-11. Retransmission may result in dupli-
cates. By line 13, however, only one copy of them will be
kept in the buffer and fed to the game. In the event that the
remote site or the network fails, the local site will be stuck
in the loop freezing the game until it is recovered. It does
not make more sense to allow the player to proceed alone.

3.2. Algorithm for Real-time Consistency

In Algorithm 1, the two functions, BeginFrameTiming()
and EndFrameTiming(), work together to ensure real-time
consistency. We first discuss a few concepts:

• CFPS: the constant number of frames that the game is
expected to deliver in a second. The value of CFPS is
game-specific but it is normally 60.
• FPS: frames per second, the actual speed of the game.
• RTT: the round-trip time between the two sites. The

one-way network latency is estimated by RTT/2.

A naive way to control the game speed is to consume
what is left in the current frame time by waiting. This works
fine in a single-host system. Since the FPS is constant, the
VM just needs to block until end of current frame time.
However, in a network environment, naive waiting will not
work because network latencies may cause a frame (more
specifically, SyncInput) to take longer than 1/CFPS. In this
case, the subsequent frames must compensate for the delay.

We devise Algorithms 3 and 4 for this purpose. They use
the following four global variables:

• AdjustTimeDelta: the delay carried over from the
preceding frame that the current frame should compen-
sate for. It is initialized as zero.
• TimePerFrame: the expected time per frame, 1

CFPS .
• CurrFrameStart: beginning time of current frame.
• CurrFrameEnd: the expected ending time of current

frame, i.e., when it should end.

BeginFrameTiming() can be as simple as to call the OS
to get the current system time and record it in variable
CurrFrameStart. Then, as shown in Algorithm 3, End-
FrameTiming() estimates the time when the current frame
should end by adding the expected TimePerFrame and Ad-
justTimeDelta to CurrFrameStart. If the resulting Cur-
rFrameEnd is smaller than the current system time, the cur-
rent frame has taken longer time than it should. Then this
lag should be compensated in the following frame by Ad-
justTimeDelta, which is a negative value. Otherwise, the
current time has ended faster than expected. We set Ad-
justTimeDelta to zero and consume the remaining time of
current frame by waiting.

In what has been discussed so far, algorithm EndFram-
eTiming() compensates for the latencies in SyncInput().
However, there is a situation that it does not handle well.
Consider the case in which two sites cannot begin at exactly
the same time, which is not uncommon in practice. Then,
depending on the initialization time difference, the earlier
site has to wait for the later site in SyncInput(). The wait-
ing can cause the earlier site to lag behind. Then the lag
is compensated in the next frames of the earlier site as re-
sult of algorithm EndFrameTiming() to speed them up. The
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Algorithm 3 Pseudocode of EndFrameTiming()
1: CurrFrameEnd = CurrFrameStart

+ TimePerFrame + AdjustTimeDelta;
2: CurrTime = get current time();
3: if CurrFrameEnd < CurrTime then
4: AdjustTimeDelta = CurrFrameEnd - CurrTime;
5: else
6: AdjustTimeDelta = 0;
7: Wait for time of (CurrFrameEnd - CurrTime);
8: end if

Algorithm 4 Pseudocode of BeginFrameTiming()
1: var Time SyncAdjustTimeDelta, CurrTime;
2: CurrFrameStart = CurrTime = get current time();
3: if MySiteNo = 0 then
4: SyncAdjustTimeDelta = 0;
5: else if MySiteNo != 0 then
6: MasterFrame = LastRcvFrame[0] - BufFrame;
7: SyncAdjustTimeDelta =

(Frame - MasterFrame) * TimePerFrame
- (CurrTime - (MasterRcvTime - RTT/2)) ;

8: end if
9: AdjustTimeDelta += SyncAdjustTimeDelta;

speed-up again causes wait in SyncInput(), and so forth. In
this way, the site that starts earlier is always penalized if the
initialization lag cannot be smoothed out because of reasons
such as network latencies. The earlier site will suffer from
considerable speed fluctuation.

Hence we need to design algorithm BeginFrameTime()
more carefully, as shown in Algorithm 4. The main idea
is to smooth out deviations between the speeds of two sites
based on the speed of one reference site. To achieve so,
we distinguish two types of sites: a master site (let it be
site 0 for simplicity) that provides the reference speed, and
a slave site (site 1 in a two-site configuration) that adjusts
its pace according to the reference speed. We introduce the
following three notations:

• MasterFrame: The latest known frame of site 0,
which is LastRcvFrame[0] - BufFrame by Algorithm 2
(line 1). This is because the received frame has already
counted local lag.
• MasterRcvTime: The time when site 1 receives the

partial input to frame LastRcvFrame[0] from site 0.
• SlaveFrame: The current frame of site 1, at which

site 1 computes the speed deviation. It is actually the
global variable Frame in Algorithm 1.

Based on the above notations, the slave site (site 1) es-
timates the time when the master sent the MasterFrame by
t = MasterRcvTime - RTT/2. The time difference between
current time (site 1’s local time) and the time the master sent

the MasterFrame is estimated by d = CurrTime - t. Then the
number of frames elapsed during this period is estimated
by fn = d/TimePerFrame. The following equation (4) esti-
mates The frame of the master site at current time (of site
1) is estimated by f =MasterFrame + fn. The difference of
frames between the two sites at current time (of site 1) is
estimated by fd = SlaveFrame - f = Frame - f. If the slave
site lags behind, the value will be negative; and if the slave
is faster, the value will be positive. We estimate the time
deviation between the sites by SyncAdjustTimeDelta = fd
* TimePerFrame. It is easy to verify that this is how we
compute SyncAdjustTimeDelta in Algorithm 4.

Then we add SyncAdjustTimeDelta to the aforemen-
tioned global variable AdjustTimeDelta. Note that in Algo-
rithm 4 we only adjust the speed of the slave site according
to the speed of the master site. In the master site, the vari-
able SyncAdjustTimeDelta is always zero. As a result, no
matter which site starts earlier, the slave site tries to com-
pensate for the startup time deviation: if site 0 starts earlier,
site 1 will catch up; if site 1 starts earlier, it will slow down
to wait for site 0; in either case the two sites will be syn-
chronized within a short period and stay in a synchronized
state. No site will be penalized. This contrasts the result
of not using Algorithm 4, in which the earlier site will suf-
fer from speed fluctuation. In practice, the startup time de-
viation between two sites will not be overly large. In our
system, a simple session control protocol is implemented to
ensure that two sites start at almost the same time, with at
most one round-trip time deviation. Then the slave site can
smooth out the deviation within only a few frames.

4 Performance Evaluation

From the perspective of realtime multi-player gaming,
we consider the following two metrics:

• Smoothness: how the game is paced at each site.
• Synchrony: how closely two sites are synchronized.

To evaluate smoothness and synchrony, we need to mea-
sure the frame time of one site as well as the deviation be-
tween the frame times of two sites. Therefore we conduct
two series of experiments: Series 1 will measure the average
frame time of one site under different network conditions to
evaluate speed of the game, and the average deviation of
frame time to see how smooth the game is. Series 2 will
measure the time difference between two sites for the same
frames to evaluate synchrony of the two sites. In addition,
the results of series 1 and 2 wlll also verify the ideal network
conditions for our system to be reasonably effective.

We use a network emulator, Netem8, to emulate the
Internet environment. It runs on a Gentoo linux (kernel

8http://www.linux-foundation.org/en/Net:Netem
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Figure 1. Frame rates and smoothness

2.6.22-r9) server computer with one Intel Pentium IV 2.4
GHz CPU and 1 GB RAM. The Netem server has two net-
work cards that are bridged, each being connected to one
gaming client PC running MS Windows XP SP2. The two
PCs are also connected similarly to a time server for mea-
suring game times on the two PCs without having to syn-
chronize their physical clocks. On the two PCs, our system
is installed and the same game image of Street Fighter 2 is
loaded. 9 The actual game does not affect the results.

4.1. Experimental Results

4.1.1. Experiment Series 1

To emulate a range of local and wide-area latencies, we ex-
periment on round-trip times ranging from 0 to 400 mil-
liseconds. Since the local lag is 100ms, the threshold RTT
should not deviate too far away from 200ms. To see the
threshold clearly, the step is set to 10ms from 0 to 200ms
and 50ms from 200ms to 400ms. We do one experiment
for each of those latency values. During each experiment,
we record the beginning time of every frame of each site to
the time server. The experiment stops after recording 3,600
frames. After that, we first calculate each frame time and
then average times of the 3,600 frames for each experiment.
Finally, we calculate the average of the absolute deviations
of the frame times. 10 The results are plotted in Figure 1.

From Figure 1 we find that, when RTT is from 0 to
140ms, the average frame times are about 17ms which is
the normal game speed of 60 FPS. The frame time increases
as the network latency increases. As a result, the speed of
the game gradually slows down. When RTT is from 0 to
90ms, the average deviation is almost 0ms. When RTT is
from 100ms to 130ms, the average deviation is still under
5ms. However, when RTT reaches beyond 140ms, the aver-

9http://en.wikipedia.org/wiki/Street Fighter II
10For n numbers, x1, x2, . . . , xn, their average is x̄ = (x1+ x2+ ...+ xn)/n

and the average deviation is (|x1 − x̄| + |x2 − x̄| + . . . + |xn − x̄|)/n.

Figure 2. Synchrony between two sites

age deviation suddenly jumps to 11ms and over. Hence we
identify the threshold RTT as around 140ms.

From Figure 1 we also find that, when RTT is 150ms, the
average deviation is an inflection point, i.e., it goes above
that of RTT=140ms and that of RTT=160ms. This is be-
cause 150ms is around the threshold even though its av-
erage frame time is still around 17ms. As a result, it is
not stable and the deviation is large. However, when net-
work latency is increased to 160ms, the average frame time
is slowed down to around 20ms, or 50 FPS. Then the sys-
tem can tolerate higher latencies and the deviation becomes
smaller. Nevertheless, the consequence is that the speed
of the game is degraded to 50 FPS, which is considerably
slower than the expected frame rate 60 FPS. Therefore, we
do not recommend to run our system over networks with
RTT latencies higher than 140ms.

4.1.2. Experiment Series 2

In this series, we measure the time difference of every frame
between two sites. For similar reasons as in series 1, we set
the RTT step as 10ms during 0-200ms and as 50ms from
200-400ms. We do one experiment for each of those RTT
values. During each experiment, every site sends a packet to
the time server when every frame begins and the time server
records the receiving time. We can safely consider the RTT
in a LAN as under 1ms. Each experiment stops after 3600
frames and we calculate the time difference between the two
sites for every frame and then calculate the their absolute
average. 11 The results are plotted as in Figure 2.

From Figure 2 we see that when RTT varies from 0
to 130ms, the average of absolute differences is less than
10ms. When it goes above 140ms, however, the average of
absolute differences quickly goes up. For reasons similar
to what has been discussed above, the threshold is around
140ms and 150ms is an inflection point.

11The absolute average of x1, x2, . . . , xn is (|x1 | + |x2 | + . . . + |xn |)/n.
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4.2. Discussions

There seems a discrepancy between the 100ms local lag
and the 140ms experimental RTT threshold. In fact, 140ms
RTT means 70ms one-way delay. Hence, the 100ms local
lag should be considered as the maximum one-way delay
that our system can tolerate. As shown in Figure 2, un-
der the threshold condition (RTT=140ms), the average ab-
solute synchrony deviation between the two sites is about
15ms. To prepare for deviations, this 15ms should be de-
ducted from the 100ms maximum. In addition, each site
sends one message every 20ms. In Algorithm 3, concep-
tually lines 7-11 may send messages at a higher rate. In
the actual implementation, however, we need to strike a
balance between interactivity and utilization of system re-
sources (such as CPU and bandwidths). Hence all outbound
messages are buffered. As a result, there may be an average
delay of 10ms (worst-case 20ms) between the time an ac-
tion is input and the time it is sent out. We should also take
this 10ms away from the 100ms maximum. In addition,
production and consumption of messages are performed by
two threads. Assuming the thread time slice is 10ms, there
is a 5ms average delay between the time a message is put in
the buffer and the time it is sent. Therefore, the threshold
one-way time should be around 100ms - 15ms - 10ms - 5ms
= 70ms. This is why the RTT threshold is about 140ms.

We fix local lag at 100ms rather than adapt it to network
conditions, esp. RTT. The reasons are explained as follows.
As discussed above, when RTT is above 140ms, local lag
will likely be above 100ms. No matter whether or not local
lag is dynamically adapted to RTT, the user will experience
noticeably degraded local responsiveness. Hence it does not
pay off to implement adaptive local lag, which would add to
system complexity. On the other hand, when RTT is below
140ms, fixing local lag at 100ms satisfies the interactivity
requirements while keeping the implementation simple. A
lowered local lag would increase the user’s sensitivity to
network conditions. The user would have to continuously
adjust herself to thrashing game speed as the network speed
fluctuates. Hence adapting local lag does not pay off, either.

5. Related Work

A large number of collaboration transparency systems
have been developed, e.g., [1, 6, 7, 8, 14]. which adapt
single-user software applications into multi-user applica-
tions without modifying their source code. Our work is
the first that extends collaboration transparency techniques
to the realtime gaming domain in which multiple players
must be allowed to input simultaneously and the states must
be synchronized in real time. By comparison, in tradi-
tional systems, simultaneous inputs are often disallowed
[1, 6] or allowed only when application semantics is known

[7, 8, 14]. Moreover, those systems only need to guaran-
tee that different sites eventually see the same view [1, 6]
or replicas of the shared data converge [7, 8, 14] without
having to achieve view or data consistency in real time.

As in traditional collaboration transparency systems, the
assumption underlying our work is determinism of the VM.
In our work, we replicate the same game image and guar-
antee the same initial state as well as the same sequence
of user inputs. The game VM from which we extended,
MAME, is deterministic after careful analyses. There-
fore, the general difficulties of synchronization in repli-
cated collaboration transparency systems (as noted in [6])
are not found in our system. Nevertheless, accesses to host-
dependent external resources such as system clocks, envi-
ronment variables, and disk files may be sources of nonde-
terminisms since they provide other types of inputs (from
the system instead of the user). In the case that accesses to
those resources exist, they must also be coordinated as well
to ensure same inputs to all VMs [6].

According to the classification in [9], our work is a
type of replicated continuous application because its state
changes are not only caused by users’ actions but also the
passage of time. Several techniques are widely used for
consistency control in this domain, such as local lag, time-
warp, and dead reckoning [5, 3, 9]. Timewarp needs to roll-
back application states, which may be used in realtime sys-
tems if the costs of rolling back are not too high. It is not ap-
plicable for solving our problem because rolling back states
of a distributed game without semantic knowledge can be
expensive and disrupt the game players’ experience. Dead
reckoning, on the other hand, needs to know the semantics
of the applications in order to make informed predictions. It
cannot be used in our context because our system does not
assume knowledge about the games to avoid being bound to
specific games. Our work uses local lag to delay the execu-
tion of local actions until remote actions on the same frame
are received. Our contribution is to extend a well-known
technique for solving a new problem, i.e., real-time consis-
tency control without modifying source code or assuming
semantic knowledge of the games.

In addition, our work addresses the real-time constraints
at the application level. This way we avoid making assump-
tions about availability of QoS support at lower levels, such
as RSVP [15] and DiffServ [2]. Also at the application
level, many distributed multimedia systems explore how to
satisfy the real-time constraints by varying the amount of
transmitted data under different network conditions (e.g.,
the MPEG standards). However, those techniques are not
applicable in our system. As discussed in Section 3, con-
sistency in our work relies on reliable transmission of input
data; the amount of data is not excessive; reducing or dis-
carding input data would lead to logical inconsistencies; and
user inputs cannot be known ahead of time to be buffered.
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6. Conclusions

This paper presents an approach to adapting a single-
machine game VM into a distributed gaming system. By
this approach, a huge number of legacy games emulated by
the original VM are turned into distributed games without
any modification. As a main contribution, it initiates a new
paradigm of so-called real-time collaboration transparency
in a new application area, multi-player network gaming. At
the heart of this approach is a novel synchronization algo-
rithm. The main challenge in this context is how to imple-
ment both logical and real-time consistency control without
assuming semantic knowledge of the games. This work ex-
tends a well-known method, local lag, to a new application
domain that has not been explored to the best of our knowl-
edge. We have implemented the system and evaluated its
performance under a variety of network conditions. Our
experimental results show that our system works the best
when network round-trip delay is under around 140ms. As
suggested in the analyses, any system taking a similar ap-
proach is subject to a similar latency constraint.

The journal version of this paper [16] addresses issues
such as how to support multiple players and observers, how
to accommodate late comers, and how the system performs
in presence of packet losses. In future research, we plan to
extend this work on mobile devices.
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