
Hermes: On Collaboration across Heterogeneous
Collaborative Editing Services in the Cloud

Huanhuan Xia∗, Tun Lu∗, Bin Shao†, Xianghua Ding∗ and Ning Gu∗
∗School of Computer Science, Fudan University, Shanghai, China

Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China

Email: {huanhuanxia, lutun, dingx, ninggu}@fudan.edu.cn
†Microsoft Research, Beijing, China

Email: binshao@microsoft.com

Abstract—With the prevalence of cloud services, more and
more editing tools are moving from client to cloud for collab-
oration. Google Docs, Microsoft Office Web Apps, Zoho Office
Suite are such representative cloud backed co-editing services.
People from different organizations may choose different service
providers, which implies the needs of cross-cloud document
collaboration. However, it is hard to make different collabora-
tive editing services interoperate with each other. On the one
hand, it is not realistic to let all service providers comply
to a unified standard and provide interoperation interfaces.
On the other hand, the challenge of consistency maintenance
in real-time document synchronization still exists. These make
interoperability one of the most significant collaboration barriers
in online collaborative editing. This paper presents a transparent
approach called Hermes to interoperating between heterogeneous
collaborative editing services in the cloud. Users are allowed to use
their familiar services to participate in the cross-cloud document
collaboration. Service providers do not need to put any effort to
interoperate with other services. Our approach is validated by a
system prototype.

Keywords—Collaborative editing, cross-cloud collaboration,
consistency maintenance.

I. INTRODUCTION

In the trend of economic globalization, we have witnessed
an explosion of cloud services for online collaboration [1].
Cloud services are accessible anytime anywhere on any device
as long as there is internet connection. Cloud services allow
geographically dispersed teams to work simultaneously on a
large range of online documents, supporting real-time collabo-
ration and seamless integration with other in-cloud services like
cloud storage and data sharing. More and more enterprises and
organizations are turning to services in the cloud, a.k.a. SaaS
(software as a service) to leverage its high availability, elastic-
ity, and lower infrastructure costs [2]. Google Docs, Microsoft
Office Web Apps and Zoho Office Suite are representative
cloud collaborative services for document editing.

Due to the pay-as-you-go model of SaaS, enterprises have
the freedom to choose their preferable collaboration services
(considering the service functionalities, price, and reliability,
etc.) to react the changing business needs. On the one hand,
users are often unwilling to abandon the user interface they are
familiar with, to pay for and learn a new user interface for an
ad-hoc collaboration. On the other hand, cloud service users
would not like to be bound to a single service provider [3].
Interoperable and portable cloud services are very desirable
since they allow users to work collaboratively using their
familiar tools. Moreover, lack of a universal set of standards
or interfaces leads to a significant risk of vendor lock-in [2].

Standardization appears to be a good solution to address
this interoperability issue. However, it is very difficult to make
progress on the standardization process if the leading vendors
can not reach a consensus [4]. In current stage, cloud service
brokerage is a promising way to interoperate between hetero-
geneous services by protocol conversion. Technically, unlike
storage service interoperation or integration, e.g. Jolidriver [5],
which can be easily realized by wrapping service APIs to
provide a unified user interface, it is much more difficult
to make real-time interactive applications like collaborative
editing service interoperate with each other.

Firstly, existing collaboration services only provide APIs
for document storage and sharing, but no APIs are exposed
for manipulating the shared document directly. Secondly, con-
current updates on the shared documents in different cloud
inevitably lead to inconsistency. Consistency maintenance is
one of the fundamental challenges in collaborative editing
services, and it is still there when a brokerage tries to make
them interoperate for cross-cloud collaboration. Thirdly, the
brokerage service cannot change user experience on original
services, e.g. requiring users to install new software.

It is a meaningful yet challenging work to bridge hetero-
geneous cloud services. In this paper, we propose a trans-
parent approach called Hermes that can enable the interoper-
ability between different cloud collaborative editing services.
The brokerage service enables the document synchronization
across heterogeneous collaborative editing services with strong
data consistency guarantees. It is transparent for both service
providers as well as end users. On the one hand, service
providers do not need to modify their source code or provide
additional APIs to interoperate with other services. On the other
hand, users do not need to pay for new services and learn new
user interfaces. They can still use their familiar services to
participate in the cross-cloud document collaboration. Users are
not required to install any additional tools like browser plug-
ins. They can use the brokerage service just as an ordinary
cloud service on any device.

The rest of the paper is organized as follows. Section II
presents the main idea of our approach and the technical issues
that need to be addressed. The Hermes architecture is described
in Section III. Section IV elaborates how to transparently adapt
heterogeneous collaborative editing services so that they can
talk to each other. Section V elaborates a generic collaboration
engine for document consistency maintenance. Hermes is eval-
uated in Section VI. We discuss the related work in Section VII
and conclude in Section VIII.

Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design

978-1-4799-3776-9/14/$31.00 ©2014 IEEE
655

Google
Document

UA

Microsoft Word
Web App

Group A

UBU U

document changes

Automate the synchronization
talk between UA and UB

Group B

Hermes

Fig. 1. Illustration of the main idea of Hermes.

II. MAIN IDEAS AND CHALLENGES

A. Main ideas

Cloud collaborative editing services allow geographically
distributed users to edit a document at the same time. A user’s
local document can be automatically synchronized with others.
Consider two groups of users GA and GB as shown in Figure 1.
They are independently working on the same document but
using two different collaborative editing services. For any user
in a group, e.g. UA ∈ GA, he can see any change on the
document from other users in his own group. Therefore, for two
users UA ∈ GA and UB ∈ GB , if one can tell the other what
changes have been made by his group and apply the remote
changes on his own document, the two groups’ documents can
be synchronized through the “synchronization talk” between
UA and UB .

Based on this basic idea, we employ robot users in Hermes
to automate the “synchronization talk” between heterogeneous
cloud collaborative editing services. From a user’s perspective,
one user only needs to share the document with a robot
user in the brokerage service to participate in a cross-cloud
collaboration. The robot user is just a member in the same
group. Collaborators can still use their familiar collaborative
editing services and do not need to worry about the docu-
ment synchronization across different services. From a service
provider’s perspective, robot users have no difference with
other human users. They do not need to modify their source
code or provide additional APIs for interoperating with other
similar services.

In Hermes, a robot user is designed such that it works like
a human user. Specifically, it uses a web browser to participate
in a document collaboration on a collaborative editing service.
A document synchronization from a robot user UA to UB can
be accomplished through following steps:

Step 1: UA updates the local document by synchronizing with
the server of the corresponding collaborative editing
service, e.g. through saving the current document in
a Microsoft Word Web App.

Step 2: UA reads the document rendered in the user interface.

Step 3: UA compares the current document with the previous
one observed.

Step 4: If any change is detected, UA sends these changes to
UB in the form of editing operations; otherwise, it
finishes this document synchronization.

Step 5: UB applies the received document changes on its
document.

Step 6: UB synchronizes the updated document with the
server to upload the applied changes.

B. Technical Issues

1) Automatic interactions with the collaborative editing
service: There are three kinds of interactions between a robot
user and its corresponding collaborative editing service, namely
reading the document state, applying document changes re-
ceived from other robot users, and synchronizing the local
document with the server. However, most of the existing cloud
collaborative editing services do not provide necessary APIs
to programmatically realizing these interactions, especially for
document editing APIs which are required for a robot user to
apply received document changes. Therefore, the first issue that
has to be addressed is how to automate the interactions with a
collaborative editing service.

2) Consistency maintenance in document synchronization:
Another issue in a synchronization talk is the document in-
consistency caused by concurrent operations. In a “synchro-
nization talk” between two robot users, since the documents
are concurrently updated by individual groups, these changes
cannot be applied in another robot user’s document directly.
For example, the original documents of GA and GB contain
the same string “abc”. Before a “synchronization talk”, robot
users UA and UB see their documents changed to “axbc” and
“ac”, respectively. If they exchange the document changes, i.e.
O1 = Insert[1, “x”] and O2 = Delete[1, “b”], and apply the
remote changes to their own document directly. UB’s document
becomes “axc”, but UA’s document becomes “abc” where
character “x” is incorrectly deleted. This leads to document
inconsistency. Therefore, algorithms of concurrency control
and data consistency maintenance have to be implemented for
robot users to apply remote changes correctly.

III. DESIGN OF HERMES

Figure 2 shows the architecture of Hermes. Each robot user
consists of three core components: CES User Interface , CES
Adaptor, and Collaboration Engine.

CES User Interface (CUI) is used by a robot user to
participate in a document collaboration on the corresponding
cloud collaborative editing service. It is the same with the user
interface used by human users, i.e. a web user interface opened
in a web browser.

CES Adaptor (CA) realizes the automatic interactions with
the collaborative editing service, i.e. reading the document
state, applying document changes received from other robot

CES
User Interface

CES
Adaptor

Collaboration
Engine

CES
User Interface

CES
Adaptor

Collaboration
Engine

document
state

rface

edits

Coll

or

document
changes

n Cdocument
changes

Cloud
CES

CES
User Interface

CES
User Interface

document
state

ace

ace

Cloud
CES

CES
User Interface

CES
User Interface

Use

Use

Hermes

Fig. 2. Hermes architecture.

users, and synchronizing the local document with the server.
Intuitively, it can be considered as a robot user’s “eyes” and
“hands”. CES Adaptor’s implementation is specific to cloud
collaborative editing services, however it exposes a common
interface specified as follows:

interface CESAdaptor {
ReadDocument() : Document
Apply(Operation[] operations) : void
Sync() : void

}

ReadDocument returns a Document object which is cur-
rently displayed in the CUI. A Document object corresponds to
one or several HTML code fragments in the web user interface.
Robot users have to communicate with each other based on a
common document model to synchronize the document states,
which hides the heterogeneity of different services.

Apply is invoked to apply remote operations on the local
document. These operations are received from other robot users
and defined on the common document model. The invocation
of Apply must ensure the operations are defined on the current
document displayed in the robot user’s CUI.

Sync is invoked to synchronize the local document with
the server of the corresponding collaborative editing service.
Specifically, after a Sync invocation, human collaborators who
are using the same service will be aware of the document
changes made by other groups, and the local document will get
updated if the document is modified by human collaborators.

Collaboration Engine (CE) is responsible for detecting
document changes and synchronizing the document with other
robot users with strong data consistency guarantees. In a cross-
cloud document collaboration, a robot user periodically checks
the document state, i.e. synchronizing the document with the
server and comparing the current document state with the
previous document state. If any changes are detected, it will
propagates them to Collaboration Engines of other robot users.
When remote changes are received, due to consistency issue,
these changes cannot be applied on the local document directly.
These changes have to be transformed to the right form before
applied.

Collaboration Engine is common to all cloud collaborative
editing services. It needs to be implemented only once and can
be reused when a new collaborative editing service is integrated
by Hermes. Note that only two robots are shown in Figure 2.
Actually, the number of robot users depends on the number
of groups involved in a cross-cloud collaboration. These robot
users are connected with each other via collaboration engines
to form a Peer-to-Peer network inside Hermes.

IV. ADAPTING CLOUD COLLABORATIVE EDITING

SERVICES

A. Document Model and Operations

To enable the document collaboration across heterogeneous
collaborative editing services, a common document model,
including the document operations, should be determined first
for robot users to communicate with each other on a common
basis. What document model to use depends on the type
of the document on which the cross-cloud collaboration is
conducted, e.g. Office Open XML [6] for collaborations on
format text documents, SVG DOM [7] for collaborations on
graphic document.

Although documents on Google Document and Microsoft
Word Web App may contain tables, headings, footnotes,
floating figures besides formatted characters, we simplify the
document as text document that only consists of formatted
characters for clear explanation of Hermes’s essential ideas.
As a result, a text document is modeled as a list of for-
matted characters, and two primitive operations are defined:
Insert(pos, ch) (insert a formatted character ch at position
pos) and Delete(pos, ch) (delete the character ch at position
pos). Changing the format of a character can be realized by a
combination of a Delete and an Insert operation. Actually,
a more complex text document, e.g. a word file, can also be
modeled as list of document objects [8].

B. Adapting Cloud Collaborative Editing Services

APIs provided by cloud collaborative editing services can
ease the service adaptation for cloud interoperability to some
extent. However, almost all existing cloud collaborative editing
services do not provide suitable APIs for document editing.
Therefore, we resort to a more generic technique – web browser
automation.

Selenium [9] is a set of tools for automating web ap-
plications. It interacts with the UI elements in a web page
using JavaScript injection, and provides client APIs for Java,
C#, Ruby, and Python. Selenium was originally proposed for
testing web applications automatically. Now, it supports almost
all mainstream web browsers, and some mainstream browser
vendors have taken (or are taking) steps to make Selenium a
native part of their browsers.

In this section, we elaborate how to adapt Google Docu-
ment and Microsoft Word Web App by using the technique of
web browser automation.

1) Read the document state: Reading the document state is
actually a reverse engineering that converts a document from
the view representation to the model representation. In a web
user interface, a document corresponds to one or several code
fragments in the HTML view.

Figure 3 (a) and (b) show the hierarchical structures of web
elements for rendering a document in Microsoft Word Web
App and Google Document, respectively. Selenium supports
finding web elements by their identifiers, tags, CSS selectors
etc., and retrieving elements’ attributes and inner text. There-
fore, the content of a document can be extracted by traversing
the hierarchical structure of these related web elements.

2) Apply remote document changes: Like a human user’s
interactions with the service’s UI using a mouse and key-
board, document changes can be applied automatically by
sending a series of mouse and keyboard events to the

(a) Microsoft Word Web App (b) Google Document

Fig. 3. Hierarchical structures of web elements for rendering a document in
Microsoft Word Web App (a) and Google Document (b).

657

web UI through Selenium (e.g. WebElement.click and
WebElement.sendKeys). Algorithm 1 specifies the pro-
cedure of inserting and deleting formatted characters.

Algorithm 1 Apply (operations)

1: for all o ∈ operations do
2: SetCaret(o.pos)
3: if o.type = Insert then
4: SetFont(o.ch.font)
5: driver.switchTo().activeElement().sendKeys(o.ch)
6: else if o.type = Delete then
7: driver.switchTo().activeElement().sendKeys(

Keys.DELETE)
8: end if
9: end for

Before applying an operation, the caret needs to be moved
to the editing position specified by the parameter pos of the
operation (line 2). A straightforward way is moving the caret to
the beginning of the document, and then performing pos times
of rightward-moving (sendKeys(Keys.ARROW_RIGHT))
operations. However, it is not efficient for a long document.

After the caret is moved to the right editing position,
a Delete operation can be directly executed by sending a
“DELETE” keyboard event (line 7). To insert a formatted
character, if the format of the character is the same with the
current font setting, sending a keyboard event is enough (line
5); otherwise, the text font needs to be set at first (line 4),
which can be realized by interacting with those UI controls
for font settings. For example, enabling or disabling the bold
font setting can be realized by “clicking” the web element
div#boldButton and a#fsbcBold-Small in Google
Document and Microsoft Word Web App, respectively.

3) Synchronize with the collaborative editing service
server: The method of Sync in the CES Adaptor is provided
for Collaboration Engine to programmatically control the doc-
ument synchronization within a group. Actually, it extends a
collaborative editing service to support asynchronous document
synchronization.

Microsoft Word Web App synchronizes the document asyn-
chronously by default. The document synchronization can only
be triggered by explicitly saving the document through clicking
the “Save document” button or pressing “Ctrl+S”. So, the
asynchronous document synchronize can be straightforwardly
realized by sending a mouse click event to the element of “Save
document” button (a#qatSave-Small).

However, documents in Google Document are synchronized
in real time, i.e. Google Document saves the document au-
tomatically and collaborators can see the document changes
stroke by stroke. Fortunately, offline editing is supported by
Google Document. Offline operations will be saved locally
and synchronized with the server when the network becomes
available. So, the asynchronous document synchronization can
be realized by programmatically switching the working mode
between online and offline.

V. GENERIC COLLABORATION ENGINE

Since documents on different cloud collaborative editing
services are concurrently modified by human users in individ-
ual groups, directly applying remote changes received from
a remote robot user may lead to inconsistent document state.

To address the inconsistency issue caused by concurrent opera-
tions, a lot of consistency maintenance and concurrency control
algorithms have been developed for collaborative editing over
past two decades. Operation Transformation (OT) [10], [11]
is the most famous one. Its basic idea is to transform the
parameters of an operation according to the effects of previ-
ously executed concurrent operations so that the transformed
operation can achieve the correct effect and make the document
consistent. For the example shown in Section II-B2, remote
operation O2 must be transformed against O1 to become O′

2 =
Delete[2, “b”] before applied on UA’s document. Similarly, O1

must also be transformed against O2 before applied on UB’s
document, although the resulting form is the same with the
original form.

Hermes uses OT to resolve conflicts and maintain data
consistency for cross-cloud document synchronization. Robot
users communicate with each other via their Collaboration
Engines, and form a Peer-to-Peer collaborative editing network
in Hermes. For each robot user, its local document corresponds
the one in the cloud collaborative editing service this robot user
is connected with; human users’ operations performed on the
document can be considered as the local operations performed
by the robot user.

The implementation of the Collaboration Engine is generic
to all cloud collaborative editing services. Two core methods
DetectLocalChanges and ExecuteRemoteChanges are imple-
mented in the Collaboration Engine for detecting and prop-
agating local document changes and applying remote changes
received from other robot users. After all of human users’
operations are propagated through robot users and applied on
remote documents, document states will be consistent with
each other across all cloud collaborative editing services.

A. Detect and broadcast local document changes

In a typical OT collaborative editing system, a user opera-
tion will be propagated to remote sites after executed on local
site; meanwhile, the operation will be recorded for transform-
ing later received remote operations. However, a robot user
cannot directly get the history operations performed by the
human users. Therefore, it uses the algorithm of Myers [12] to
derive the incremental operations on the document by diffing
the current document state with the one observed previously.

Algorithm 2 (DetectLocalChanges) specifies the procedure
of detecting and propagating local document changes. Before
detecting the document changes, the method Sync in the
CES Adaptor is called to synchronize with the server of the
corresponding collaborative editing service to update the local
document (line 1–2). Local document changes are derived by
diffing the last document state maintained by the Collaboration
Engine with the current document state (line 3). If any changes
are detected, the incremental operations are propagated to all
other robot users (line 5), and these operations are recorded
in the history buffer hb used for transforming later remote
document changes (line 7).

When the document changes are propagated to remote
robot users, the robot user’s identifier rid as well as the state
vector sv of the document on which the document changes
are generated are propagated (line 5). The state vector sv
(line 6) is a vector of N logic clocks, one clock per robot
user. For each robot Rrid, sv[rid] denotes the number of
Rrid’s operations that have been executed on the document.

658

Algorithm 2 DetectLocalChanges()

1: adaptor .Sync()
2: newdoc ← adaptor .ReadDocument()
3: opts ← Diff(doc, newdoc)
4: if opts �= [] then
5: Broadcast(rid , sv , opts)
6: sv [rid] ← sv [rid] + opts .length
7: hb.append(opts)
8: doc ← newdoc
9: end if

State vectors can be used to determine the relation of two
operations. For any two operations O1 and O2, we say (1)
O1 is happen-before O2 (O1→O2), if and only if ∀i(sv1[i] ≤
sv2[i]) ∧ ∃i(sv1[i] < sv2[i]), where sv1 and sv2 are the state
vectors of the documents on which O1 and O2 are generated,
respectively; (2) O1 is concurrent-with O2 (O1‖O2), if and
only if O1 	→O2 ∧O2 	→O1 [11].

Algorithm 3 ExecuteRemoteChanges (rid, opts, rsv)

1: if operations in opts are not casually ready then
2: Add 〈rid, rsv, opts〉 into q to delay the execution of opts
3: else
4: opts′ ←Transform(rid, rsv, opts, hb)
5: adaptor.Apply(opts′)
6: sv [rid] ← sv [rid] + opts .length
7: hb.append(opts)
8: Check remote operations in q and apply those are casually

ready now
9: doc ← adaptor.ReadDocument()

10: adaptor.Sync()
11: end if

B. Execute remote document changes

Given the identifier of the remote robot user rid, the
received operations opts, and the remote document state rsv
on which the operations are generated, Algorithm 3 (ExecuteR-
emoteChanges) specifies the procedure of applying the remote
document changes on the local document. A remote operation
can only be executed when it is casually-ready; otherwise,
the operation’s execution will be delayed (line 2) until it is
casually-ready. An operation O is casually-ready means all
operations that happen-before O have been executed on this
site. Before applied on the document, remote operations opts
have to be transformed against concurrent operations recorded
in the history buffer hb (line 4). More details of operation
transformation can be found in [10], [11].

The method Apply in the CES Adaptor is called to apply
the transformed operations on the document rendered in the
user interface (line 5). Note that opt’s execution may get
some delayed operations casually-ready. So, the queue q for
storing delayed operations is checked until all casually-ready
operations are applied on the document (line 8). Finally, the
document object maintained by the Collaboration Engine is
updated (line 9), and the method Sync in the CES Adaptor
is called so that the collaborator using the same collaborative
editing service can be aware of the new document changes
(line 10).

VI. EVALUATION

Hermes is a cloud brokerage service that enables the real-
time document synchronization across heterogeneous collab-
orative editing services. The awareness latency of document

Cloud
CES

UA UBCloud
CES

UA

UB

Fig. 4. (a) sub-procedures in a document synchronization. (b) sub-procedures’
execution times (ms) in an example document synchronization in the experi-
ment.

changes in a cross-cloud collaboration is crucial to user
experience, which means how long it takes for Hermes to
get a document change become perceivable for collaborators
in other cloud collaborative editing services. In this section,
we evaluate Hermes by measuring the awareness latency of
document changes and identifying the most important factors
that determine the awareness latency.

A. Experiment setup

A proof-of-concept prototype of Hermes was implemented
in Java. Two robot users, namely UA and UB , were set up
on a server configured with two Inter Xeon 2.80 GHz CPUs
and 4G memory. Google Chrome V27.0.1453.94m was used
by UA and UB to access Google Document and Microsoft
Word Web App, respectively. To measure the awareness latency
of document changes, for example from Google Document to
Microsoft Word Web App, a test client was set up to author
a document on Google Document, and the awareness latency
was recorded when each document change was successfully
synchronized to the Microsoft Word Web App.

The experiment was repeated twice to measure the aware-
ness latencies from Google Document to Microsoft Word Web
App (G → M) and from Microsoft Word Web App to Google
Document (M → G), respectively. To ensure the experiment
can be repeated under the same setting, the test client was
implemented by using Selenium to automate the document
authoring. Before the experiment, an author’s process of tran-
scribing a Wikipedia document entitled Hermes was recorded.
The generated edit script was used by the test client to author
the document by simulating the author’s editing behaviors,
including the editing operations and the typing speed.

B. Results

As illustrated in Figure 4 (a), The awareness latency of a
document change depends on the execution times of two pro-
cedures implemented in the Collaboration Engine: DetectLo-
calChanges (Algorithm 2) and ExecuteRemoteChanges (Algo-
rithm 3). DetectLocalChanges consists of four sub-procedures:
Sync, ReadDocument, Diff and Broadcast; while ExecuteR-
emoteChanges consists of three sub-procedures: Transform,
Apply and Sync. Among them, Sync is invoked by DetectLo-
calChanges to update the local document, while Sync is in-
voked by ExecuteRemoteChanges to upload the remote changes
(received from other robot users) to the server so that human
collaborators using the same service can be aware of these
changes.

Taking a document synchronization (G → M) in the ex-
periment for example, Figure 4 (b) shows each sub-procedure’s

TABLE I. AWARENESS LATENCY (MS).

Sub-procedures G→M M→G

DetectLocalChanges

Sync 11536.8 4701.4

ReadDocument 346 1469.8

Diff 0.9 0.4

Broadcast 0.5 0.4

ExecuteRemoteChanges
Transform 1.1 0.8

Apply 2109.2 1563.7

Sync 4785.6 11971.9

Total 18780.1 19708.5

execution time in details. This example document synchroniza-
tion took about 19 seconds, i.e. the awareness latency. Two
invocations of CES Adaptor’s Sync method account for the
majority of awareness latency (90%, 17.1 seconds in total).
ReadDocument and Apply, another two methods in the CES
Adaptor, took 460ms (2.4%) and 1413ms (7.4%), respectively.
The execution times of Diff, Broadcast and Transform are
negligible compared to that of CES Adaptor.

There were 27 (G → M) and 16 (M → G) document
synchronizations happened in the two experiments, respec-
tively. And each document synchronization consisted of 43
and 72 operations on average. Table I shows the results of
the two awareness latency experiments. The average awareness
latencies of G → M and M → G are 18.8 seconds and 19.7
seconds. The execution times of Google Document adaptor’s
Sync and Microsoft Word Web App adaptor’s Sync are about
12 seconds and 5 seconds, respectively. They account for the
majority of awareness latency (85% around).

From the experimental results, we observe that the aware-
ness latency in cross-cloud collaboration mainly depends on the
QoS of collaborative editing services, especially for the asyn-
chronous document synchronization. The intermediate broker-
age, i.e. Hermes, imposes only a short delay of few seconds
(2.5 seconds for G → M and 3 seconds for M → G in the
experiment).

VII. RELATED WORK

A lot of work has been done on transparently sharing
desktop editors or making heterogeneous editors interoperate,
e.g. Intelligent Collaboration Transparency (ICT) [13] and
Transparent Adaptation (TA) approach[8]. They are able to
convert existing applications into multi-user collaborative ones
without any modification to the original applications. ICT even
allows the shared editors to be heterogeneous.

However, both ICT and TA must be implemented such that
local editing events are captured and replayed at remote sites.
This mechanism works well for desktop application sharing
where both data and applications are replicated on all sites.
However, it does not work for services hosted in cloud where
applications are deployed in the cloud and users access the data
and services using a thin client on any device, e.g. a browser on
a mobile phone. Users are often reluctant to install any software
or even a browser plug-in when using a cloud service.

Li and Lu [14] proposed a lightweight approach to transpar-
ent sharing of heterogeneous single-user editors. It eliminates
the needs of capturing and translating editing events; instead it
only assumes two simple interfaces that capture and reset the
editor state. However, during the document synchronization,
users editing operations are blocked. It is quite annoying to

the deeply involved collaborators when they are working on a
highly interactive tasks where frequent document synchroniza-
tions are required.

VIII. CONCLUSIONS

In this paper, we propose a transparent approach to making
heterogeneous editing services interoperate in the cloud. The
brokerage service Hermes enables real-time cross-cloud docu-
ment synchronization with strong data consistency guarantees.
Users can participate in a cross-cloud document collaboration
using their familiar services, and service providers do not
need to put any effort to interoperate with similar services.
The proof-of-concept prototype validates the feasibility of
our approach. The evaluation results show that the brokerage
imposes only a short delay on the cross-cloud document
synchronization, while the awareness latency mainly depends
on the QoS of involved services.

ACKNOWLEDGMENT

The work was supported by the National Natural Science
Foundation of China (NSFC) under Grants No.61272533,
No.61332008, No.61300201, and Shanghai Science & Tech-
nology Committee Project under Grant No.11JC1400800 and
No.13ZR1401900.

REFERENCES

[1] “The Forrester Wave: Cloud Strategies Of Online Collab-
oration Software Vendors, Q3 2012,” www.ibm.com/cloud-
computing/files/The%5Forrester%5Wave%5Cloud.pdf.

[2] G. A. Lewis, “The role of standards in cloud-
computing interoperability (cmu/sei-2012-tn-012).” 2012,
http://www.sei.cmu.edu/library/abstracts/reports/12tn012.cfm.

[3] Z. Zhang, C. Wu, and D. W. Cheung, “A survey on cloud
interoperability: taxonomies, standards, and practice,” SIGMETRICS
Perform. Eval. Rev., vol. 40, no. 4, pp. 13–22, Apr. 2013. [Online].
Available: http://doi.acm.org/10.1145/2479942.2479945

[4] T. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and chal-
lenges,” in Advanced Information Networking and Applications (AINA),
2010 24th IEEE International Conference on, 2010, pp. 27–33.

[5] “Jolidrive,” http://www.jolicloud.com.

[6] “Office Open XML,” http://www.ecma-
international.org/publications/standards/Ecma-376.htm.

[7] “SVG DOM,” http://www.w3.org/TR/SVG/svgdom.html.

[8] S. Xia, D. Sun, C. Sun, D. Chen, and H. Shen, “Leveraging single-
user applications for multi-user collaboration: the coword approach,”
in Proceedings of the 2004 ACM conference on Computer supported
cooperative work. ACM, 2004, pp. 162–171.

[9] “Selenium,” http://docs.seleniumhq.org/.

[10] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware systems,”
in SIGMOD ’89: Proceedings of the 1989 ACM SIGMOD international
conference on Management of data. New York, NY, USA: ACM, 1989,
pp. 399–407.

[11] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving con-
vergence, causality-preservation, and intention-preservation in real-time
cooperative editing systems,” ACM Transactions on Computer-Human
Interaction, vol. 5, no. 1, pp. 63–108, Mar. 1998.

[12] E. W. Myers, “An o(nd) difference algorithm and its variations,” Algo-
rithmica, vol. 1, no. 1-4, pp. 251–266, 1986.

[13] D. Li and R. Li, “Transparent sharing and interoperation of hetero-
geneous single-user applications,” in Proceedings of the 2002 ACM
conference on Computer supported cooperative work. ACM, 2002,
pp. 246–255.

[14] D. Li and J. Lu, “A lightweight approach to transparent sharing of fa-
miliar single-user editors,” in Proceedings of the 2006 20th anniversary
conference on Computer supported cooperative work. ACM, 2006, pp.
139–148.

660

