Chapter 5 )
Parallel Processing of Graphs Shethie

Bin Shao and Yatao Li

Abstract Graphs play an indispensable role in a wide range of application domains.
Graph processing at scale, however, is facing challenges at all levels, ranging
from system architectures to programming models. In this chapter, we review the
challenges of parallel processing of large graphs, representative graph processing
systems, general principles of designing large graph processing systems, and various
graph computation paradigms. Graph processing covers a wide range of topics and
graphs can be represented in different forms. Different graph representations lead to
different computation paradigms and system architectures. From the perspective of
graph representation, this chapter also briefly introduces a few alternative forms of
graph representation besides adjacency list.

5.1 Overview

Graphs are important to many applications. However, large-scale graph processing
is facing challenges at all levels, ranging from system architectures to programming
models. There are a large variety of graph applications. We can roughly classify the
graph applications into two categories: online query processing, which is usually
optimized for low latency; and offline graph analytics, which is usually optimized
for high throughput. For instance, deciding instantly whether there is a path between
two given people in a social network belongs to the first category, while calculating
PageRank for a web graph belongs to the second.

Let us start with a real-life knowledge graph query example. Figure 5.1 gives
a real-life relation search example on a big knowledge graph. In a knowledge
graph, queries that find the paths linking a set of given graph nodes usually give
the relations between these entities. In this example, we find the relations between
entities Tom Cruise, Katie Holmes, Mimi Rogers, and Nicole Kidman.
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Tom Cruise
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Fig. 5.1 Relation search on a knowledge graph
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Fig. 5.2 A general graph processing system stack

Many sophisticated real-world applications highly rely on the interplay between
offline graph analytics and online query processing. Given two nodes of a graph,
the “distance oracle” algorithm designed by Qi et al. (2014) estimates the shortest
distance between two given nodes; it is an online algorithm. However, to estimate
the distances, the algorithm relies on “landmark” nodes in the graph and an optimal
set of landmark nodes are discovered using an offline analytics algorithm.

Generally speaking, the system stack of a graph processing system consists of
all or some of the layers shown in Fig. 5.2. At the top, graph algorithms manipulate
graphs via programming interfaces provided by a graph processing system. Between
the programming interfaces and the storage backend, there usually is a computation
engine that executes the graph manipulation instructions dictated by the graph
algorithms through programming interfaces.

At the bottom, the storage backend hosts the graph data using a certain graph rep-
resentation, either in a single machine or over multiple distributed machines. Storage
backends have important system design implications. The storage layer largely
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determines the system optimization goal, as discussed in Kaoudi and Manolescu
(2015). For example, systems including SHARD by Rohloff and Schantz (2011),
HadoopRDF by Husain et al. (2011), RAPID by Ravindra et al. (2011), and EAGRE
by Zhang et al. (2013) use a distributed file system as their storage backends. The
systems that directly use a file system as storage backend are usually optimized for
throughput due to the relatively high data retrieval latency. In contrast, systems such
as H2RDF by Papailiou et al. (2012), AMADA by Aranda-Anddjar et al. (2012),
and Trinity.RDF by Zeng et al. (2013) are optimized for better response time via the
fast random data access capability provided by their key-value store backends.

In this section, we first introduce the notation and discuss why it is difficult to
process large graphs. Then, we present some general principles of designing large-
scale graph processing systems after a brief survey of some representative graph
processing systems.

5.1.1 Notation

Let us introduce the terminology and notation that will be used throughout this
chapter. A graph may refer to a topology-only mathematical concept as defined in
Bollobds (1998) or a data set. In the former sense, a graph is a pair of finite sets
(V, E) such that the set of edges E is a subset of the set V x V. If each pair of
vertices are ordered, we call G a directed graph; otherwise, we call it an undirected
graph.

In what follows when we represent a data set as a graph, especially when there are
data associated with the vertices, we refer to the vertices as graph nodes or nodes.
Correspondingly, we call adjacent vertices neighboring nodes. If the data set only
contains graph topology or if we only want to emphasize its graph topology, we call
them vertices.

There are two common ways of representing and storing a graph: adjacency list
and adjacency matrix. The way of representing a graph determines the way we can
process the graph. As most graph query processing and analytics algorithms highly
rely on the operator that gets adjacent vertices of a given vertex, adjacency list is
usually a preferred way of representing a graph especially when the graph is large.
If we use the adjacency matrix representation, we need to scan a whole adjacency
matrix row to access the adjacent vertices of given vertex. For a graph with billions
of vertices, the costs of scanning matrix rows will be prohibitive. In this chapter, we
assume graphs are represented and stored as adjacency lists unless otherwise stated.

5.1.2 Challenges of Large Graph Processing

It is difficult to process large graphs mostly because they have a large number
of encoded relations. We summarize the challenges of large graph processing as:
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(1) the complex nature of graph; (2) the diversity of graphs; (3) the diversity of
graph computations; (4) the scale of graph size.

5.1.2.1 The Complex Nature of Graph

Graphs are inherently complex. The contemporary computer architectures are good
at processing linear and simple hierarchical data structures, such as Lists, Stacks,
or Trees. When the data scale goes large, the divide and conquer computation
paradigm still works well for these data structures, even if the data is partitioned
over distributed machines.

However, when we are handling graphs, especially large graphs, the situation
is changed. Andrew Lumsadine and Douglas Gregor (2007) summarize the char-
acteristics of parallel graph processing as data-driven computations, unstructured
problems, poor locality, and high data access to computation ratio. The implication
is twofold: (1) From the perspective of data access, a graph node’s neighboring
nodes cannot be accessed without “jumping” in the storage no matter how we
represent a graph. In other words, a large amount of random data accesses are
required during graph processing. Many modern program optimization techniques
rely on data locality and data reuse. Unfortunately, the random data access nature of
graph breaks the premise. This usually causes poor system performance as the CPU
cache is not effective for most of the time. (2) From the perspective of program
structure, it is difficult to extract parallelism because of the unstructured nature of
graphs. Partitioning large graphs itself is an NP-hard problem as shown by Garey
et al. (1974); this makes it hard to get an efficient divide and conquer solution for
many large graph processing tasks.

5.1.2.2 The Diversity of Graphs

There are many kinds of graphs, such as scale-free graphs, graphs with community
structures, and small-world graphs. A scale-free graph is a graph whose degrees
follow a power-law distribution. For graphs with community structure, the graph
nodes can easily be grouped into sets of nodes such that each set of nodes are densely
connected. For small-world graphs, most nodes can be reached from other nodes by
a small number of hops. The performance of graph algorithms may vary a lot on
different kinds of graphs.

5.1.2.3 The Diversity of Graph Computations

Furthermore, there are a large variety of graph computations. As discussed earlier,
graph computations can be roughly classified into two categories: online query
processing and offline graph analytics. Besides common graph query processing
and analytics tasks, there are other useful graph operations such as graph generation,
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graph visualization, and interactive exploration. It is challenging to design a system
that can support all these operations on top of the same infrastructure.

5.1.2.4 The Scale of Graph Size

Last but not least, the scale of graph size does matter. Graphs with billions of nodes
are common now, for example, the Facebook social network has more than two
billion monthly active users.! The World Wide Web has more than one trillion
unique links. The De brujin graph for genes even has more than one trillion nodes
and at least eight trillion edges. The scale of graph size makes many classic graph
algorithms from textbooks ineffective.

5.1.3 Representative Graph Processing Systems

Recent years have witnessed an explosive growth of graph processing systems as
shown by Aggarwal and Wang (2010). However, many graph algorithms are ad hoc
in the sense that each of them assumes that the underlying graph data is organized
in a certain way to maximize its performance. In other words, there is not a standard
or de facto graph system on which graph algorithms are developed and optimized.
In response to this situation, a number of graph systems have been proposed. Some
representative systems are summarized in Table 5.1.

Neo4j? focuses on supporting online transaction processing (OLTP) of graphs.
Neo4j is like a regular database system, with a more expressive and powerful data
model. Its computation model does not handle graphs that are partitioned over
multiple machines. For large graphs that cannot be stored in the main memory, disk
random access becomes the performance bottleneck.

From the perspective of online graph query processing, a few distributed in-
memory systems have been designed to meet the challenges faced by disk-based
single-machine systems. Representative systems include Trinity by Shao et al.
(2013) and Horton by Sarwat et al. (2013). These systems leverage RAM to speed
up random data accesses and use a distributed computation engine to process graph
queries in parallel.

On the other end of the spectrum are MapReduce by Dean and Ghemawat
(2008), PEGASUS by Kang et al. (2009), Pregel by Malewicz et al. (2010), Giraph,
GraphLab by Low et al. (2012), GraphChi by Kyrola et al. (2012), and GraphX
by Gonzalez et al. (2014). These systems are usually not optimized for online
query processing. Instead, they are optimized for high-throughput analytics on large
graphs partitioned over many distributed machines.

Thttp://newsroom.fb.com/company-info/.
Zhttp://neodj.com/.
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Table 5.1 Some representative graph processing systems (SB means the
feature depends on its storage backend)

Native | Online | Data In-memory | Transaction

graphs | query |sharding | storage support
Neodj Yes Yes No No Yes
Trinity Yes Yes Yes Yes Atomicity
Horton Yes Yes Yes Yes No
FlockDB? No Yes Yes No Yes
TinkerGraphb Yes Yes No Yes No
InfiniteGraph® | Yes Yes Yes No Yes
Cayley? Yes Yes SB SB Yes
Titan® Yes Yes SB SB Yes
MapReduce No No Yes No No
PEGASUS No No Yes No No
Pregel No No Yes No No
Giraph! No No Yes No No
GraphLab No No Yes No No
GraphChi No No No No No
GraphX No No Yes No No

https://github.com/twitter/flockdb
Phttps://github.com/tinkerpop/blueprints/wiki/TinkerGraph
“http://www.objectivity.com/products/infinitegraph/
dhttps://github.com/google/cayley
“http://thinkaurelius.github.io/titan/
fhttp://giraph.apache.org/

MapReduce-based graph processing depends heavily on inter-processor band-
width as graph structures are sent over the network iteration after iteration. Pregel
and its follow-up systems mitigate this problem by passing computation results
instead of graph structures between processors. In Pregel, analytics are expressed
using a vertex-centric computation paradigm. Although some well-known graph
algorithms such as PageRank and shortest path discovery can be expressed using
vertex-centric computation paradigm easily; there are many sophisticated graph
computations that cannot be expressed in a succinct and elegant way.

The systems listed in Table 5.1 are compared from five aspects. First, does the
graph exist in its native form? When a graph is in its native form, graph algorithms
can be expressed in standard, natural ways as discussed by Cohen (2009). Second,
does the system support low-latency query processing? Third, does the system
support data sharding and distributed parallel graph processing? Fourth, does the
system use RAM as the main storage? Fifth, does the system support transactions?


https://github.com/twitter/flockdb
https://github.com/tinkerpop/blueprints/wiki/TinkerGraph
http://www.objectivity.com/products/infinitegraph/
https://github.com/google/cayley
http://thinkaurelius.github.io/titan/
http://giraph.apache.org/
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5.2 General Design Principles

We have reviewed a few representative graph processing systems. In this section,
we discuss a few general principles of designing a general-purpose, real-time graph
processing system.

5.2.1 Addressing the Grand Random Data Access Challenge

As discussed earlier, a graph node’s neighboring nodes’ cannot be accessed without
“jumping” in the storage no matter how we represent a graph. A lot of random
accesses on hard disks lead to performance bottlenecks. It is important to keep
graphs memory-resident for efficient graph computations, especially for real-time
online query processing. In order to create a general-purpose graph processing
system that supports both low-latency online query processing and high-throughput
offline analytics, the grand challenge of random accesses must be well addressed at
the data access layer.

Despite the great progress made in disk technology, it still cannot provide the
level of efficient random access required for graph processing. DRAM (dynamic
random-access memory) is still the only promising storage medium that can provide
a satisfactory level of random access performance with acceptable costs. On the
other hand, in-memory approaches usually cannot scale to very large graphs due to
the capacity limit of a single machine. We argue that distributed RAM storage is a
promising approach to efficient large graph processing.

By addressing the random data access challenge, we can design systems that
efficiently support both online graph query processing and offline graph analytics
instead of optimizing the systems for certain graph computations. For online
queries, it is particularly effective to keep graphs in-memory, as most online query
processing algorithms, such as BFS, DFS, and subgraph matching, require a certain
degree of graph exploration. On the other hand, offline graph computations are
usually conducted in an iterative, batch manner. For iterative computations, keeping
data in RAM can boost the performance by an order of magnitude due to the reuse
of intermediate results as discussed by Zaharia et al. (2010).

5.2.2 Avoiding Prohibitive Indexes

For offline graph analytics, partitioning the computation task well (if possible) is, to
some extent, the silver bullet. As long as we can find an efficient way to partition the
graph data, we basically have a solution to efficient offline graph processing. Due
to the random data access challenge, general-purpose, efficient disk-based solutions
usually do not exist. But under certain constraints, offline graph analytics tasks can
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have efficient disk-based “divide and conquer” solutions. A good example is the
GraphChi system proposed by Kyrola et al. (2012). If a computational problem can
be well-partitioned, then the subproblems can be loaded in the main memory and
processed in-memory one at a time. However, as discussed by Lumsdaine et al.
(2007), many graph problems are inherently irregular and computation partitioning
is hard, especially for online queries.

Compared with offline analytics, online queries are much harder to handle due
to the following two reasons. First, online queries are sensitive to network latency.
It is harder to reduce communication latency than to increase throughput by adding
more machines. On the one hand, adding more machines can reduce each machine’s
workload; on the other hand, having more machines incurs higher communication
costs. Second, it is generally difficult to predict the data access patterns of a graph
query, thus it is hard to optimize the execution by leveraging I/O optimization
techniques such as prefetching.

Many graph computations are I/O intensive; data accesses usually dominate the
graph computation costs. The performance of processing a graph query depends
on how fast we randomly access the graph. A traditional way of speeding up
random data access is to use indexes. Graph indexes are widely employed to speed
up online query processing, either by precomputing and materializing the results
of common query patterns or by storing redundant information. To capture the
structural information of graphs, graph indexes usually require super-linear indexing
time and super-linear storage space. For large graphs, for example, graphs with
billions of nodes, the super-linear complexity means infeasibility. We will show
in the following section that index-free graph processing is a possible and efficient
approach to many real-time graph query processing tasks.

5.2.3 Supporting Fine-Grained One-Sided Communications

Most graph computations are data-driven and the communication costs typically
contribute a large portion to the overall system costs. Overlapping computations
well with the underlying communication is the key to high performance.

MPI is the de facto standard for message passing programming in high-
performance computing and pairwise two-sided send/receive communication is the
major paradigm provided by MPL3 The communication progress is dictated by
explicitly invoked MPI primitive calls as shown by Majumder and Rixner (2004).
Nearly all modern network communication infrastructures provide asynchronous
network events. MPI communication paradigm incurs unnecessary latency because
it responds to network events only during send and receive primitive invocations.

In contrast, active messages introduced by von Eicken et al. (1992) is a
communication architecture that can well overlap computation and communication.

3Even one-sided primitives are included starting from MPI-2 standard, their usage is still limited.
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The communication architecture is desirable for data-driven graph computation,
especially for online graph query processing, which is sensitive to network latency.

When we use active messages, a user-space message handler will be invoked
upon the arrival of a message. The message handler is pointed by a handler index
encoded in the message. Let us use a simple example to illustrate the difference
between the two-sided communication paradigm and active messages. Suppose we
want to send some messages from one machine to another according to the output
values of a random number generator. Using active messages, we can check the
random values on the sender side and invoke a send operation only if the value
matches certain sending condition. Using the pairwise two-sided communication
paradigm, we need to invoke as many send/receive calls as the number of generated
random values and perform the value checkings on the receiver side.

5.3 Online Query Processing

In this section, we review two online query processing techniques specially designed
for distributed large graphs: asynchronous fanout search and index-free query
processing.

5.3.1 Asynchronous Fanout Search

Most graph algorithms require a certain kind of graph exploration; breadth-first
search (BFS) and depth-first search (DFS) are among the commonest. Here, we
use people search in a social network as an example to demonstrate an efficient
graph exploration technique called asynchronous fanout search. The problem is the
following: given a user of a social network, find the people whose first name is
“David” among his friends, his friends’ friends, and his friends’ friends’ friends.

It is unlikely that we can index the social network to solve the “David” problem.
One option is to index the neighboring nodes for each user, so that given any user, we
can use the index to check if there is “David” within his or her 3-hop neighborhood.

Algorithm 1: Asynchronous Fanout search
Require: v (a given graph node)
Ensure: all “Davids” within the 3-hop neighboring nodes

: N < the ids of v’s neighboring nodes

: k <« (the number of machines)

: hop <1

: Partition N into k parts: N = Ny U --- U Ng

: parallel-foreach N; in N

async_send message (N;, hop) to machine i

DU AR WN —
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Algorithm 2: On receiving message (N;, hop)

1: S; < the graph nodes with ids in N;
2: check if there are “Davids” in S;
3: if hop < 3 then

4: N’ < ids of the neighboring nodes of the nodes in S;
5 Partition N’ into k parts: N' = N{ U--- U N;

6: parallel-foreach N/ in N’

7 async_send message (N, hop + 1) to machine i

However, the size and the update cost of such an index are prohibitive for a large
graph. The second option is to create an index to answer 3-hop reachability queries
for any two nodes. This is infeasible either because “David” is a popular name and
we cannot check every “David” in the social network to see whether he is within 3
hops to the current user.

We can tackle the “David” problem by leveraging fast memory-based graph
explorations. The algorithm simply sends asynchronous “fan-out search” requests
recursively to remote machines as shown by Algorithms 1 and 2. Specifically, it
partitions v’s neighboring nodes into k parts N1, Na, ..., Ni (line 4 of Algorithm 1),
where k is the total number of machines. Then, the “fan-out” search is performed
by sending message (N;, hop) (line 6 of Algorithm 1) to all machines in parallel.
On receiving the search requests, machine i searches for “David” in its local data
storage (line 2 of Algorithm 2) and sends out the next-hop “fan-out” search requests
(N!, hop + 1) (line 7 of Algorithm 2).

This simple fanout search works well for randomly partitioned large distributed
graphs. As demonstrated by Shao et al. (2013), for a Facebook-like graph, exploring
the entire 3-hop neighborhood of any given node in the graph takes less than 100 ms
on average.

5.3.2 Index-Free Query Processing

It is usually harder to optimize online query processing because of its limited
response time budget. We use the subgraph matching problem as an example to
introduce an efficient online query processing paradigm for distributed large graphs.

Subgraph matching is the basic graph operation underpinning many graph
applications. Graph G’ = (V’, E’) is a subgraph of G = (V, E) if V' C V and
E’' Cc E. Graph G” = (V”, E”) is isomorphic to G’ = (V’, E’) if there is a
bijection f : V' — V” such that xy € E’iff f(x)f(y) € E”. For a given data
graph G and a query graph G’, subgraph matching is to retrieve all the subgraphs of
G that are isomorphic to the query graph.
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Canonical subgraph matching algorithms are usually conducted in the following
three steps:

1. Break the data graph into basic units such as edges, paths, or frequent subgraphs.

2. Build indexes for the basic units.

3. Decompose a query into multiple basic unit queries, do subgraph matching for
the unit queries, and join their results.

It is much more costly to index graph structure than to index a relational table.
For instance, 2-hop reachability indexes usually require O (n*) construction time.
Depending on the structure of the basic unit, the space costs vary. In many cases,
they are super-linear. Furthermore, multiway joins are costly too, especially when
the data is disk-resident.

To demonstrate the infeasibility of index-based solutions for large graphs, let
us review a survey on subgraph matching made by Sun et al. (2012), as shown in
Tables 5.2 and 5.3.

Table 5.2 shows the index costs of a few representative subgraph matching
algorithms proposed by Ullmann (1976), Cordella et al. (2004), Neumann and
Weikum (2010), Atre et al. (2010), Holder et al. (1994), Zhu et al. (2011), Cheng
et al. (2008), Zou et al. (2009), He and Singh (2008), Zhao and Han (2010), Zhang
et al. (2009), and Sun et al. (2012). To illustrate what the costs listed in Table 5.2
imply for a large graph, Table 5.3 shows their estimated index construction costs and
query time for a Facebook-like social network. Although RDF-3X and BitMat have
linear indexing complexity, they take more than 20 days to index a Facebook-like
large graph, let alone those super-linear indexes. The evident conclusion is that the
costly graph indexes are infeasible for large graphs.

To avoid building sophisticated indexes, the STwig method proposed by Sun et al.
(2012) and the Trinity.RDF system proposed by Zeng et al. (2013) process subgraph
matching queries without using structural graph indexes. This ensures scalability;

Table 5.2 Survey on subgraph matching algorithms by Sun et al. (2012)

Algorithms Index Index Update Graph size
size time cost in experiments
Ullmann, VF2 | — - - 4484
RDF-3X O(m) O(m) O(d) 33M
BitMat O(m) O(m) O(m) 361M
Subdue - Exponential O(m) 10K
SpiderMine - Exponential O(m) 40K
R-join O(nm'/?) ot O(n) M
Distance-join | O(nm'/?) ot O(n) 387K
GraphQL O(m +nd") O(m +nd") o) 320K
Zhao O(nd") o(nd") 0o(dh) 2M
GADDI O (nd%) O(ndh) o@dh) 10K

STwig O(n) O (n) o(l) 1B
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Table 5.3 Index costs and query time of subgraph matching algorithms for a Facebook-

like graph
Algorithms Index size Index time Query time
Ullmann, VF2 | — - >1000
RDF-3X 1T >20 days >48
BitMat 24T >20 days >269
Subdue - >67 years -
SpiderMine - >3 years -
R-join >175T >10'3 years >200
Distance-join >175T >10" years >4000
GraphQL >13T(r=2) >600 years >2000
Zhao >12T(r=2) >600 years >600
GADDI >2 x 10°T (L=4) >4 x 10° years >400
STwig 6G 33s <20

they work well for graphs with billions of nodes, which are not indexable in terms
of both index space and index time.

To compensate for the performance loss due to the lack of structural indexes,
both STwig and Trinity. RDF heavily make use of in-memory graph explorations to
replace costly join operations. Given a query, they split it into a set of subqueries that
can be efficiently processed via in-memory graph exploration. They only perform
join operations when they are absolutely necessary and not avoidable, for example,
when there is a cycle in the query graph. This dramatically reduces query processing
time, which is usually dominated by join operations.

5.4 Offline Analytics

Graph analytics jobs perform a global computation against a graph. Many of them
are conducted in an iterative manner. When the graph is large, the analytics jobs are
usually conducted as offline tasks.

In this section, we review the MapReduce computation paradigm and vertex-
centric computation paradigm for offline graph analytics. Then, we discuss commu-
nication optimization and a lightweight analytics technique called local sampling.

5.4.1 MapReduce Computation Paradigm

MapReduce, as elaborated by Dean and Ghemawat (2008), is a high-latency yet
high-throughput data processing platform that is optimized for offline analytics for
large partitioned data sets. MapReduce is a very successful programming model
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for big data processing. However, when used for processing graphs, it suffers from
the following problems: First, it is very hard to support real-time online queries.
Second, the data model of MapReduce cannot model graphs natively and graph
algorithms cannot be expressed intuitively. Third, MapReduce highly relies on data
partitioning; however, it is inherently hard to partition graphs.

It is possible to run a graph processing job efficiently on a MapReduce platform
if the graph could be well-partitioned. Some well-designed graph algorithms
implemented in MapReduce are given by Qin et al. (2014). The computation
parallelism a MapReduce system can achieve depends on how well the data can be
partitioned. Unfortunately, the partitioning task of a large graph can be very costly,
as elaborated by Wang et al. (2014).

5.4.2 Vertex-Centric Computation Paradigm

The vertex-centric graph computation paradigm, which was first advocated by
Malewicz et al. (2010), provides a vertex-centric computational abstraction over
the BSP model proposed by Valiant (1990). A computation task is expressed in
multiple iterative super-steps and each vertex acts as an independent agent. During
each super-step, each agent performs some computations, independent of each other.
It then waits for all other agents to finish their computations before the next super-
step begins.

Compared with MapReduce, Pregel exploits finer-grained parallelism at the
vertex level. Moreover, Pregel does not move graph partitions over the network;
only messages among graph vertices are passed at the end of each iteration. This
greatly reduces the network traffic.

Many follow-up works, such as GraphLab by Low et al. (2012), PowerGraph
by Gonzalez et al. (2012), Trinity by Shao et al. (2013), and GraphChi by Kyrola
et al. (2012), support the vertex-centric computation paradigm for offline graph
analytics. Among these systems, GraphChi is specially worth mentioning as it well
addresses the “divide and conquer” problem for graph computation under certain
constraints. GraphChi can perform efficient disk-based graph computation as long
as the computation could be expressed as an asynchronous vertex-centric algorithm.
An asynchronous algorithm is one where a vertex can perform a computational
task based solely on the partially updated information from its incoming links. This
assumption, on the one hand, frees the need of passing messages from the current
vertex to all its outgoing links so that it can perform the graph computations block
by block. On the other hand, it inherently cannot efficiently support traversal-based
graph computations and synchronous graph computations because it cannot freely
access the outgoing links of a vertex.

Although quite a few graph computation tasks, including Single Source Short-
est Paths, PageRank, and their variants, can be expressed elegantly using the
vertex-centric computation paradigm, there are many that cannot be elegantly and
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intuitively expressed using the vertex-centric paradigm, for example, multilevel
graph partitioning.

5.4.3 Communication Optimization

Communication optimization is very important for distributed graph computation.
Although a graph is distributed over multiple machines, from the point view of
a local machine, vertices of the graph are in two categories: vertices on the local
machine, and vertices on any of the remote machines. Figure 5.3 shows a local
machine’s bipartite view of the entire graph.

Let us take the vertex-centric computation as an example. One naive approach
is to run jobs on local vertices without preparing any messages in advance. When a
local vertex is scheduled to run a job, we obtain remote messages for the vertex and
run the job immediately after they arrive. Since the system usually does not have
space to hold all messages, we discard messages after they are used. For instance,
in Fig. 5.3, in order to run the job on vertex x, we need messages from vertices u,
v, and others. Later on, when y is scheduled to run, we need messages from u and
v again. This means a single message needs to be delivered multiple times, which
is unacceptable in an environment where network capacity is an extremely valuable
resource.

Some graph processing systems, such as the ones built using Parallel Boost
Graph Library (PBGL), use ghost nodes (local replicas of remote nodes) for
message passing as elaborated by Gregor and Lumsdaine (2005). This mechanism
works well for well-partitioned graphs. However, it is difficult to create partitions
of even size while minimizing the number of edge cuts. A great memory overhead
would be incurred for a large graph if it is not well-partitioned. To illustrate the

Fig. 5.3 Bipartite view on a Remote
local machine
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memory overhead, Fig. 5.4 shows the memory usage for graphs with 1 million to
256 million vertices. It takes nearly 600 GB main memory for the 256-million-node
graph when the average degree is 16.

The messages are usually too big to be RAM-resident. We will have a great
performance penalty, if we buffer the messages on the disk and perform random
accesses on the disk. To address this issue, we can cache the messages in a smarter
way. For example, on each machine, we can differentiate remote vertices into two
categories. The first category contains hub vertices, that is, vertices having a large
degree and connecting to many local vertices. The second category contains the
remaining vertices. We buffer messages from the vertices in the first category for
the entire duration of one computation iteration. For a scale-free graph, for example,
one generated by degree distribution P (k) ~ ck™" with ¢ = 1.16 and y = 2.16,
20% hub vertices are sending messages to 80% of vertices. Even if we only buffer
messages from 10% hub vertices, we have addressed 72.8% of the message needs.

5.4.4 Local Sampling

In a distributed graph processing system, a large graph is partitioned and stored
on a number of distributed machines. This leads to the following question: Can
we perform graph computations locally on each machine and then aggregate their
results to derive the final result for the entire graph? Furthermore, can we use
probabilistic inferences to derive the result for the entire graph from the result
on a single machine? This paradigm has the potential to overcome the network
communication bottleneck, as it minimizes or even totally eliminates the network
communication. The answers to these questions are positive. If a graph is partitioned
over ten machines, each machine has full information about 10% of the vertices and
10% of the edges. Also, the edges link to a large amount of the remaining 90% of
the vertices. Thus, each machine actually contains a great deal of information about
the entire graph.
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Fig. 5.5 Effectiveness of 100
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The distance oracle proposed by Qi et al. (2014) demonstrated this graph
computation paradigm. Distance oracle finds landmark vertices and uses them to
estimate the shortest distances between any two vertices in a large graph. Figure 5.5
shows the effectiveness of three methods for picking landmark vertices. Here,
the X axis shows the number of used landmark vertices and the Y axis shows
estimation accuracy. The best approach is to use vertices that have the highest
global betweenness and the worst approach is to simply use vertices that have the
largest degree. The distance oracle approach uses the vertices that have the highest
betweenness computed locally. Its accuracy is close to the best approach and its
computation costs are dramatically less than that of calculating the highest global
betweenness.

5.5 Alternative Graph Representations

In the previous sections, we assume the graph is modeled and stored in the adjacency
list form. For a certain task, transforming a graph to other representation forms can
help tackle the problem. This section covers three of them: matrix arithmetic, graph
embedding, and matroids.

5.5.1 Matrix Arithmetic

A representative system is Pegasus by Kang et al. (2009). Pegasus is an open source
large graph mining system. The key idea of Pegasus is to convert graph mining
operations into iterative matrix—vector multiplications.

Pegasus uses an n by n matrix m and a vector v of size n to represent
graphs. Pegasus defines an operation called Generalized Iterated Matrix—Vector



5 Parallel Processing of Graphs 159
Multiplication (GIM-V).
/ / n
M x v =", where v; = 2j=1mi,j X v;

Based on it, three primitive graph mining operations are defined. Graph mining
problems are solved by customizing the following three operations:

* combine2(m; j, v;): multiply m; ; and v;;

e combineAll;(x1, ..., xp): sum the multiplication results from combine2 for
node i;

e assign(v;, Vpew): decide how to update v; with vy, .

Many graph mining algorithms, including PageRank, random walk, and con-
nected component, can be expressed elegantly using these three customized primi-
tive operations.

5.5.2 Graph Embedding

Some graph problems can be easily solved after we embed a graph into a high-
dimensional space as illustrated by Zhao et al. (2010, 2011) and Qi et al. (2014).
This approach is particularly useful for estimating the distances between graph
nodes.

Let us use an example given by Zhao et al. (2011) to illustrate the main
idea of high-dimensional graph embedding. To compute the distance between
two given graph vertices, we can embed a graph into a geometric space so that
the distances in the space preserve the shortest distances in the graph. In this
way, we can immediately give an approximate shortest distance between two
vertices by calculating the Euclidean distance between their coordinates in the high-
dimensional geometric space.

5.5.3 Matroids

As illustrated by Oxley (1992), any undirected graph can be represented by a
binary matrix that in turn can produce a graphic matroid. Matroids usually use an
“edge-centric” graph representation. As elaborated by Truemper (1998), instead of
representing a graph as (V, E), we consider a graph as a set E of edges and consider
graph nodes as certain subsets of E. For example, a graph (V, E) = ({a, b, ¢}, {e1 =
ab,ey = bc,e3 = ca}) can be represented as follows: E = {ejq, ez, e3} and
V ={a={e1,e3},b = ey, e2}, c = {e2, e3}}.

Matroids provide a new angle of looking at graphs with a powerful set of tools
for solving many graph problems. Even though the interplay between graphs and
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matroids has been proven fruitful, as elaborated by Oxley (2001), how matroids can
be leveraged to help design graph processing systems is still an open problem.

5.6 Summary

The proliferation of large graph applications demands efficient graph processing
systems. Parallel graph processing is an active research area. This chapter tried
to shed some light on parallel large graph processing from a pragmatic point of
view. We discussed the challenges and general principles of designing a general-
purpose, large-scale graph processing system. After surveying a few representative
systems, we reviewed a few important graph computation paradigms for online
query processing and offline analytics. Different graph representations lead to
different graph computation paradigms; each of them may be suitable for solving
a certain range of problems. At the end of this chapter, we briefly explored a few
alternative graph representation forms and their applications.
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