
An Operational Transformation Based
Synchronization Protocol for Web 2.0 Applications

Bin Shao†, Du Li‡, Tun Lu†, Ning Gu†

† School of Computer Science, Fudan University, Shanghai, China
‡ Nokia Research Center, Palo Alto, California, USA

binshao@microsoft.com∗, lidu008@gmail.com, {lutun, ninggu}@fudan.edu.cn

ABSTRACT

Current Web 2.0 services are making mass collaboration a
reality. Using a Web browser, people can participate in co-
operative work anytime, anywhere from any computing de-
vice as long as there is an Internet connection. Lying in
the heart of some well-known services is an optimistic con-
sistency control technique called operational transformation
(OT). This paper proposes TIPS, a novel sync protocol that
adapts OT for Web 2.0 applications. Based on a recent the-
oretical framework called ABT, it ensures not only conver-
gence but also the right object order for linear documents.
Designed to address the HTTP style of communication, TIPS
allows clients to sync with the server by independent time
intervals and dynamically join and leave at any time. When
processing do operations, its time complexity is linear in the
total number of operations generated by all clients during
one server interval and independent of the size of history.
TIPS is efficient for supporting a spectrum of (near-)realtime
to asynchronous collaboration editing tasks.

Author Keywords

Collaborative Systems, Consistency, Operational Transfor-
mation, Synchronization, Online Software Service, Web 2.0

ACM Classification Keywords

H.5.3 Information Systems: Group and Organization Inter-
faces—Web-Based Interaction; C.2.4 Computer Systems Or-
ganization: Distributed Systems—Client/Server

General Terms

Algorithms, Experimentation, Performance

1. INTRODUCTION

The Web has become the platform of choice for mass com-
munication and collaboration over the past decade. Recent
years have witnessed the proliferation of so-called Web 2.0

∗Bin Shao is currently with Microsoft Research Asia (MSRA).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSCW 2011, March 19–23, 2011, Hangzhou, China.

Copyright 2011 ACM 978-1-4503-0556-3/11/03...$10.00.

services such as wikis, weblogs, social networking sites, me-
dia sharing sites, and a new generation of Web-based office
productivity tools. The value and quality of a service usually
increase with the number of prosumers, i.e., users who not
only consume but also produce contents.

Among the well-known Web 2.0 services, Google Docs pi-
oneered an industrial trend to provide traditionally prepack-
aged productivity software as online Web services. Microsoft
is making a major endeavor to extend its prosperity on desk-
top to the Web territory. Using a Web browser, the users
can access a software service from any networked computer
without worrying about software installation and upgrades;
they can participate at any time of convenience without hav-
ing to stay connected. Cooperative work is one-click away.

To address latencies on the Internet, those services usually
replicate the shared data from a server. Some of them (e.g.,
Google Wave & Docs) choose to use operational transforma-
tion (OT) for consistency control. OT has been well studied
for 20+ years in the CSCW field [2, 13] and experimented
in a wide variety of collaborative applications. 1 As an op-
timistic technique, OT allows each user to modify any part
of the local data replica in a lock-free and nonblocking man-
ner. The data replicas eventually converge after the same set
of operations are invoked at all sites. As a result, local re-
sponsiveness is not sensitive to network latencies. This prop-
erty particularly appeals to collaborative applications that
run over high-latency networks such as the Internet.

In real-world Web 2.0 apps, collaborating sites generally use
HTTP for communication, which is asymmetric and client-
initiated. A client must send its updates to the server and
request for updates by peer clients from the server using
HTTP. This paradigm of communication was originally not
designed for supporting realtime collaborative apps, as shown
in [1, 3]. Although server push can be emulated by keeping
a live client-server connection, if it is broken for some rea-
son, a client will not be able to receive new updates from
the server until it re-connects to the server by HTTP. Most
existing OT works are proposed for P2P systems (e.g., [2,
14, 13, 11, 4, 6, 16, 5, 9, 8]), with only a few for centralized
systems (e.g., [7, 17, 10]). Note that a centralized system
may not necessarily be HTTP-based. Although those works
could be used in Web 2.0 apps, some adaptation would be
necessary to address the above HTTP characteristics.

1For examples, see http://www.ntu.edu.sg/home/czsun/

563

In this paper, we propose a transformation and time interval
based protocol for synchronization (TIPS) in Web 2.0 apps.
Specifically, TIPS has the following two key properties:

1. TIPS is based on a recent theoretical OT framework, called
admissibility-based transformation or ABT [5], and its cor-
rectness can be formally proved with regard to formalized
conditions. It ensures not only convergence but also the
right object order when the shared data is linear (or can be
mapped to a linear address space [15]).

2. TIPS allows clients to sync with the server in indepen-
dent and adjustable time intervals. It is efficient in han-
dling long operation sequences that may accumulate when
communication cannot occur frequently enough. This is
desirable for Web-based apps in which clients communi-
cate with the server periodically as well as mobile apps in
which clients work with intermittent connectivity [9].

Our ongoing work is extending TIPS with complementary
support for undo. Due to space limits, this paper focuses on
do operations while leaving out the correctness proofs. In
the next section, we will first survey related works. Then we
will present TIPS and involved transformation algorithms,
which is followed by a performance evaluation. Finally, we
summarize the contributions of this paper.

2. BACKGROUND AND RELATED WORK

To illustrate the basic ideas, consider a system in which two
sites start with the same initial data “aver”. We model the
shared data as a string (of atomic objects) and let the first
position be 0. Site 1 changes “aver” to “waver” by operation
o1=ins(0, w). Concurrently, site 2 changes “aver” to “ave”
by operation o2=del(3, r). When o2 reaches site 1, if it were
executed as-is, the result would go wrong, because the ob-
ject that o2 tries to delete is no longer at its original position.
To correctly execute o2, we must shift its position to incor-
porate the effect of o1. As a result, o2 is transformed into
o′
2
=del(4, r), which will reproduce the intended effect of o2

in the current state of site 1. On the other hand, when o1
arrives at site 2, it can be safely executed as-is because the
execution of o2 does not invalidate o1’s position. The two
sites eventually converge in the correct state “wave”.

2.1 Jupiter OT

Jupiter OT [7] is the first that adapts OT to a client/server
architecture in which clients communicate and sync via the
server. An extended version of Jupiter OT is applied in Google
Wave&Docs for consistency control. It uses a 2-dimensional
state space to track the transformation paths, i.e., the order
in which operations are transformed with each other.

Consider the following well-known scenario [14]. Suppose
that the initial data is “X” and three clients (1, 2, and 3) con-
currently generate three operations o1=ins(1,T), o2=del(0,X)
and o3=ins(0,O), respectively. There are six possible trans-
formation paths, two of which are shown in Figure 1.

Figure 1(A) gives the state space on the server when the
clients sync with the server in the order of 3, 1, and 2. When
client 3 syncs with the server, the server has no operation

Figure 1. In Jupiter OT, the final state of the shared data depends on

the order in which clients sync with the server.

and no transformation is needed. Hence o3 is executed as-is
yielding “OX”. Next, when client 1 syncs with the server, o3
is already there. Hence o1 is transformed with o3, resulting
o′
1
=ins(2,T). Executing o′

1
in the current server state yields

“OXT”. Finally, when client 2 syncs with the server, o2 must
be transformed with o3 followed by o′

1
. That is, the transfor-

mation path is [o3, o
′
1
]. The resulting operation o′′

2
=del(1,X)

when executed on the server yields state “OT”.

Figure 1(B) shows the server state space when the clients
sync in the order of 2, 1, and 3. After syncing o2 and o1,
the state becomes “T”. When client 3 syncs, the transfor-
mation path is [o2, o

′
1
], where o′

1
=ins(0,T). Hence, o3 is first

transformed with o2, yielding o′
3
=ins(0,O). However, when

o′
3

is transformed with o′
1
, their positions tie. Since the site

id of client 1 is smaller than that of client 3, Jupiter shifts the
position of o′

3
, yielding o′′

3
= ins(1, O) and the final state

“TO”, which differs from that in Figure 1(A).

From this example, it is clear that Jupiter OT is nondeter-
ministic in that the final data state is dependent on the order
in which clients sync with the server. It can achieve conver-
gence by enforcing the same transformation path at all sites.
However, there is no guarantee that Jupiter will adopt the
“right” transformation paths and yield the “right” final state.

2.2 Other Related OT Works

It is understood that data convergence is not the only goal
in collaborative applications and must be constrained [14,
4]. The recent theoretical framework ABT [5] introduces a
constraint called admissibility preservation, which requires
that the invocation of any remote operation not violate the
order of objects established by local operations invoked in
their generation states. The resulting order between objects
is called the effects relation, denoted as ≺. For example, in
the above scenario, when the three operations are originally
generated, the effects relation is established as O≺X≺T .
This is due to the fact that ‘O’ is inserted before ‘X’ by o3
and ‘T’ is inserted after ‘X’ by o1. By the admissibility con-
straint, no matter in which order the operations are trans-

564

formed, their effects should not violate this relation. Hence,
the correct result must be “OT” rather than “TO”.

Theoretically, TIPS builds on ABT [5] because its admis-
sibility preservation condition is formalized and subject to
formal proofs. Other OT works, including GOT [14], GOTO
[13], NICE [10], TIBOT [6], SOCT [11, 17], and COT [16],
follow [14] with an alternative constraint called intention
preservation. Theoretical comparisons with previous works
have been detailed in [5] and will not be repeated here.

TIPS is designed for Web apps in which clients (hosted by
browsers) communicate with each other via the server us-
ing HTTP strictly following the request/response paradigm.
In TIPS, each client sends operations to the server and the
server processes operations all by time intervals that are in-
dependent of each other, which effectively resembles that of
typical Web sites today. Hence TIPS is easy to implement
and deploy with standard Web technologies, even when the
set of participants is unknown a priori, dynamic or large. No
other OT work directly addresses HTTP as does this work.

The other two aspects of TIPS, linear time complexity and
time interval based sync, have appeared separately in previ-
ous works. However, TIPS is the first that achieves both and
in the context of Web apps. Moreover, its correctness can
be formally proved. For space reasons, we only compare
TIPS with its two primary sources, ABST [9] and TIBOT
[6]. Comparing other works would inevitably involve the
theoretical aspect, which is out of scope of this paper.

A few recent OT algorithms (e.g., COT [16] and ABTU [8])
achieve O(|H|) time complexity when integrating one oper-
ation into history H , which means O(|H|·|T |) to integrate
an operation sequence T . ABST [9] is the latest work opti-
mized for sequences, which takes time O(|H|+|T |) to inte-
grate sequence T . Suppose that n clients each submit a se-
quence T of the same size at the same time. Even if ABST
were run on the server, it would integrate one sequence T
into H at a time, effectively totalling O(n|H|+n2|T |). 2

Nonetheless, the sequence transformation techniques in ABST
are extended in TIPS to integrate all those n sequences si-
multaneously. Its (server) time complexity is O(logn·n|T |),
which is independent of the operation history H .

Most existing OT works, including [5, 9], use vector times-
tamps [2] to determine the concurrent relation between op-
erations. However, they must estimate and assume a maxi-
mum number of sites, which incurs considerable overheads
in dynamic, opportunistic participation as is expected in Web
apps. Although vector timestamps can be compressed [12],
the compression complicates the OT algorithm. TIPS does
not use vector timestamps. The idea of syncing based on
time intervals draws from TIBOT [6]. However, TIBOT as-
sumes a replicated system and its linear logical clocks tick
at the same pace at each site. Hence the time intervals are
not independent in TIBOT. Moreover, TIBOT cannot be for-
mally proven and counterexamples exist [4].

2It takes O(|H|+ |T |) to sync the 1st T , O((|H|+ |T |)+ |T |) the

2nd, and so on, totalling O(Σn
k=1(|H|+k|T |))=O(n|H|+n

2|T |).

3. TIPS: THE SYNC PROTOCOL

We will first present the basic sync protocol that strictly as-
sumes the request/response paradigm of client-server inter-
action as is typical in current Web environment. Then we
will discuss the robustness of this protocol and how to ex-
tend it to accommodate the emerging server push paradigm
as well as real-time communication and collaboration.

3.1 Overview of Protocol

Conceptually, our system consists of one centralized server
and a number of clients, which collaborate to modify a shared
data structure. The sync protocol has the following key prop-
erties: (1) a client can join/leave a collaborative session at
any time, (2) each client independently decides when to sync
with the server, and (3) the server independently decides
when to process operations received from the clients. These
properties make it capable of supporting a wide range of syn-
chronous and asynchronous collaboration tasks.

Figure 2 shows how any client j and the server communicate
in TIPS. Each client in our system has a unique id. A client
j synchronizes with the server every τj time, to submit local
operations of this client and to receive remote operations by
other clients that have been submitted to the server. Local
operations performed during interval τj are queued in buffer
Tj . Note that the length of τj may change over time and may
be different across clients.

On the other hand, the server processes operations from clients
every τs time, the length of which is determined by needs of
the collaboration task and may change over time. During ev-
ery interval τs, operations received from client j is queued
in buffer RBj . Operations to be sent to client j are queued
in buffer SBj to be fetched by client j at any time.

Roughly, at the end of each interval τs, the server integrates
operations in all RBj’s and dispatches the result to all SBj’s.
At the end of each interval τj , client j fetches operations in
SBj from the server, transforms SBj with Tj to yield SB′

j

and T ′
j , respectively, executes SB′

j locally and submits T ′
j

to the server. Operations in all the buffers, Tj , RBj and
SBj , are kept in the order of the so-called effects relation ≺
for efficiency reasons. We will explain the algorithm details
progressively in the following.

3.2 The Core Protocol

Algorithms 1 and 2 specifies the control procedures for client
j and the server, respectively. The shared data is replicated
at all sites and the server maintains the primary copy. The
buffers, Tj , RBj and SBj are initially empty sequences.
Each site has two threads, which work as follows.

Client: On the side of client j, when a local operation o is
generated by the user, the ERMerge algorithm is invoked to
add o into buffer Tj . As will be explained in the next section,
for efficiency reasons, ERMerge adds o into Tj in the effects
relation order. The ERMerge algorithm, which merges one
operation and a sequence that are contextually serialized, is
but a special case of serializedMerge that runs on the server,
which merges two contextually serialized sequences.

565

Figure 2. In TIPS, the server and any client j communicate using HTTP, where Tj is the client buffer for local operations from the user, and RBj

and SBj are server buffers for communicating with client j; every τj time, client j requests for remote sq′j and sends back local T ′

j ; every τs time,

the server merges operations from all clients; intervals τs and τj ’s are independent of each other. All sequences are in the effects relation order.

Algorithm 1 [C] control procedure at client j (τj)

Initialization:
1: Tj ← [];

Thread 1: handle local operation o
2: execute o on local data replica;
3: * Tj ← ERMerge(o, Tj);

Thread 2: sync with server every τj time
4: send CHK request to server; //À
5: receive sequence sq′j from server; //Á

6: * sq′′j ← ITSQ(sq′j , Tj);
7: execute sq′′j on local data replica;

8: * T ′
j ← ITSQ(Tj , sq

′
j);

9: send sequence T ′
j to server; //Â

10: Tj ← []; //only if T ′
j is received by the server Ã

Each client j has a configurable time interval τj , which con-
trols the frequency in which the client synchronizes with the
server. At end of each interval τj , client j sends a CHK re-
quest to the server to check whether there are new remote op-
erations available. The interval τj is decided by each client
j independently of other clients and the server. Hence the
client code is parameterized by τj .

In response to the CHK request, client j will receive a se-
quence sq′j of remote operations from the server. The client

first calls the ITSQ algorithm to transform sq′j with Tj , yield-

ing sq′′j , and executes sq′′j on the local data replica. Then the

client calls ITSQ to transform Tj with the original sq′j , yield-

ing T ′
j , and sends T ′

j to the server. Finally, the local buffer

Tj is reset. In the case that sq′j is empty, Tj will be sent

as-is; and in the case that Tj is empty, sq′j will be executed
as-is. As will be explained in the next section, algorithm
ITSQ transforms two contextually equivalent sequences to
incorporate the effects of one sequence into the other.

Server: On the server side, when a CHK request is received
from client j, it first calls algorithm extractRemotes to ex-
tract subsequence sq′j from SBj , then responds to client j
with sq′j and resets SBj . As will be explained in the next
section, algorithm extractRemotes extracts all operations in
SBj that are generated by clients other than j. For network-

Algorithm 2 [S] control procedure at server (τs)

Initialization:
1: ∀i: RBi ← []; SBi ← [];

Thread 1: process request from client j
2: case CHK: //À
3: * sq′j ← extractRemotes(SBj , j);
4: respond to client j with sq′j ; //Á

5: SBj ← []; //only if sq′j is received by j
6: case sequence T ′

j : //Â

7: * RBj ← serializedMerge(RBj , T
′
j);

8: respond to client j with an ACK; //Ã
Thread 2: merge RB’s every τs time

9: * msq ← nwayMerge([RB1, RB2, . . . , RBn]);
10: ∀i : RBi ← [];
11: execute msq on the primary data replica;
12: * ∀i: SBi ← serializedMerge(SBi,msq);

ing and computation efficiency, there is no need to send op-
erations generated by client j back to itself.

On the other hand, when the server receives a sequence T ′
j

from client j, it calls algorithm serializedMerge to merge T ′
j

into current receiving buffer RBj for client j. As will be
explained, algorithm serializedMerge merges two contextu-
ally serialized sequences and keeps the resulting sequence in
the effects relation order. This way operations received from
client j are accumulated in RBj until the end of interval τs.

The other thread of the server runs by a configurable interval
τs. Every τs time it performs an n-way merge to synthesize
operation sequences in all the n receiving buffers, where n
is the number of clients. As will be explained, algorithm
nwayMerge merges n contextually equivalent sequences and
keeps the output sequence in the effects relation order. If no
operations are received from client j during τs, then RBj

is an empty sequence. The n-way merge will proceed as
scheduled with an empty RBj .

After the n-way merge, the server resets all the RB’s and ex-
ecutes the merged sequence msq on the primary data replica.
Then msq is merged into the sending buffer SBj for every
client j by calling algorithm serializedMerge. Hence opera-

566

tions in SBj accumulate until the entire buffer is fetched by
client j. If client j checks more frequently than τs, buffer
SBj could be an empty sequence.

3.3 Discussions: Robustness and Extensions

The core protocol specified above can be augmented to han-
dle issues such as dynamic joining, client or network fail-
ures, real-time communication, and server push.

Dynamic Participation: When a new client j joins, the
server only needs to allocate a pair of buffers RBj and SBj .
At the same time, the client receives a copy of the data and
starts to work on the local replica. When a client j leaves the
session normally, it sends a CHK request for remote opera-
tions SBj dangling on the server and flushes its remaining
local operations in Tj to the server. The leaving is indicated
so that RBj and SBj are recollected on the server.

Client/Network Failures: Between the times a client j joins
and leaves a session, the client periodically sends a CHK re-
quest to the server to fetch new updates. This can be ex-
tended with a more frequent, negotiated liveness report in
the case that the interval τj is long enough. If the server fails
to receive some number of liveness reports from a client in a
row, it assumes that the client has crashed or left abnormally
and recollects (or swaps out) the buffers RBj and SBj .

When a client crashes, it may lose its copy of the shared data
and unsubmitted operations. In this case, the client needs
to rejoin the session to fetch the latest copy of the shared
data. If a client encounters a temporary network failure and
the server has not recollected its operation buffers when the
client reconnects, a CHK request will resync the client as
usual. However, the network failure may be so long that
the server has already recollected its buffers when the client
reconnects. Resync is still possible with a CHK request, pro-
vided that the server saves all integrated sequences.

We assume that the server does not crash, which is reason-
able because the shared data and operations can be stored
in a database. If a server is temporarily unavailable, it can
be treated similarly on the clients as a network failure. On
a modern Web client that implements HTML version 5 or
above, we can also make the data replica, operations and
other key data structures persistent in the local storage. This
client-side persistence eases client failure recovery and mit-
igates loss of data (e.g., uncommitted operations) when fail-
ures occur. Then it is possible to achieve resync by a usual
CHK request after a client crash or a long network failure.

Real-Time Collaboration: By choosing the right values for
τj and τs in a collaborative application, we can seek a bal-
ance between awareness (i.e., the time for users to see each
other’s actions) and costs (e.g., client and server CPU uti-
lization, network traffic, and energy consumption on mobile
clients). In general, the shorter the intervals, the more timely
the awareness, and the more expensive the costs. Those
costs could translate into slow system responsiveness, bat-
tery drainage and bloated bills for data communication, es-
pecially when mobile devices are used [3].

In real-time applications that require to replay every remote
operation, e.g., as in Google Wave, it is trickier than just
reducing the intervals. Under the classical request/response
paradigm of the Web today, all client-server communications
are ultimately initiated by the clients. To maintain a FIFO
channel between a client and the server, the best we can do
is probably to send one operation, wait for its response, then
immediately send the next operation, and so forth. Due to
the high frequency in communication, the number of opera-
tions will be very small for each interval and transformation
time negligible. As a result, the timeliness of awareness is
effectively determined by the HTTP round-trip time.

Although currently emulated, server push can be a more ef-
ficient approach to implementing real-time communication
and collaboration on the Web. When the server is able to
proactively push new operations to the clients, TIPS can be
conceptually simplified, which is sketched as follows.

Server: Every τs time the server broadcasts a SYNC message
to all clients asking for new operations. Once all operations
are received, the server performs the n-way merge and then
broadcasts merged sequence to all clients.

Client: After receiving the SYNC message from the server,
each client sends the newly-generated operation sequence
(empty if none) to the server. When the merged sequence
is received from the server, the client extracts the remote
subsequence and transforms it with new local operations.
Then, the transformed remote operations are executed lo-
cally. Note that there are no client intervals.

4. TRANSFORMATION ALGORITHMS

In this section, we present the algorithms used in TIPS. We
will first introduce some useful notations and utility func-
tions (Table 1) and then discuss the transformation functions.

4.1 Notations

To simplify presentation, we model the shared data as a lin-
ear string. Two primitive operations are considered: ins(pos,
char) and del(pos, char). Given any operation o, notation
o.type stands for its type (ins or del), notation o.pos is the
operation position, and notation o.char is the effect charac-
ter o inserts or deletes. If o is an insert operation, we use
o.id to denote the id of the site that generates o. If o is a
delete operation, we instead use notation o.ids to denote the
set of sites that delete the same character concurrently; these
deletions are combined during transformation.

The position of any operation o is always defined in some
state, denoted as dst(o). As is conventional [13], if dst(o1)
= dst(o2), they are contextually equivalent, denoted as o1 ⊔
o2; if o2 is defined in the state resulted from executing o1,
then o1 and o2 are contextually serialized, denoted as o1 7→
o2. Two operations o1 and o2 are contextually comparable,
denoted as o1 ⊲⊳ o2, if one of the three conditions holds: (1)
o1 ⊔ o2; (2) o1 7→ o2; or 3) o2 7→ o1.

An operation sequence sq is a list of operations, in which any
two adjacent operations are contextually serialized. Given a

567

non-empty sequence sq, its definition state is given by that
of its first operation, i.e., dst(sq) = dst(sq[0]). Any two
sequences sq1 and sq2 are contextually equivalent, denoted
as sq1 ⊔ sq2, if dst(sq1) = dst(sq2); they are contextu-
ally serialized, denoted as sq1 7→ sq2, if the last operation
in sq1 and the first operation in sq2 are contextually serial-
ized. Let s ◦ sq denote the state after executing sq in state
dst(sq)=s. Given any two sequences sq1 and sq2, we say
that sq1 is effects equivalent to sq2, denoted as sq1 ∼= sq2, if
dst(sq1) = dst(sq2) = s and s ◦ sq1 = s ◦ sq2.

To make transformations more efficient, we keep operations
in sequences according to the relative position of their effect
characters, which is called the effects relation≺. For exam-
ple, suppose that a user issues a sequence of four operations
successively, sq = [ins(2,x), del(1,b), ins(4,y), del(2,c)], chang-
ing string “abcd” into “axdy”. After reordering these oper-
ations by the ≺ order, the resulting sequence will be sq′=[
del(1,b), ins(1,x), del(2,c), ins(3,y)]. The two sequences are
effects equivalent, i.e., sq ∼= sq′, because applying sq′ to the
initial string will also yield “axdy”.

Note that there is no extra step (or cost) for reordering se-
quences in the presented algorithms. Also note that a se-
quence could mix insertions and deletions, which differs from
sequences in ABT [5] and ABST [9] that separate insertions
and deletions. However, this mixing requires special han-
dling of operations that have the same effect characters.

4.2 Some Utility Functions

Given two operations o1 and o2, we use notation o1 ≡ o2
to denote the case in which o1 and o2 have the same effect
character. There are two interesting cases: (1) o2 deletes the

effect character inserted by o1, denoted as o1
id
≡ o2; and (2)

they delete the same character, denoted as o1
dd
≡ o2. We de-

fine function ideq(o1, o2) to determine whether or not o1
id
≡

o2 holds, which returns true only if o1 7→ o2, o1.type = ins,
o2.type = del and o1.pos = o2.pos. We define function

ddeq(o1, o2) to determine whether or not o1
dd
≡ o2 holds,

which returns true only if o1 ⊔ o2, o1.type = o2.type = del
and o1.pos = o2.pos.

Now we explain how to determine the ≺ order between two
operations o1 and o2. Given o1 7→ o2, function isprecA(o1,o2)
determines whether or not o1 ≺ o2, which returns true if (1)
o1.pos < o2.pos, or (2) o1.pos = o2.pos and o1.type = del.
The precondition o1 7→ o2 means that o2 is executed imme-
diately after o1. In case (2), for example, consider state “ab”
and o1 deletes ‘a’, yielding “b”, and o2 deletes ‘b’; if o2 in-
serts ‘c’ before ‘b’, we mandate o1 ≺ o2 by policy.

Given that o1⊔o2, function isprecB(o1,o2) determines whether
or not o1 ≺ o2, which returns true only if (1) o1.pos <
o2.pos, or (2) o1.pos = o2.pos, o1.type = ins, o2.type =
del, or (3) o1.pos = o2.pos, o1.type = o2.type = ins,
o1.id < o2.id. The precondition means that the two oper-
ations are defined in the same state. In the third case, two
operations try to insert at the same position. We compare
their site ids to break the tie. It is worth noting that this tie-

Table 1. A summary of notations and utility functions.

Notation Brief Description

o1 ≺ o2 o1.char precedes o2.char in some state
o1 ⊔ o2 o1 and o2 are contextually equivalent
o1 7→ o2 o1 and o2 are contextually serialized
o1 ⊲⊳ o2 o1 and o2 are contextually comparable
sq1 ∼= sq2 sq1 and sq2 are effects equivalent
ideq(o1, o2) o1 7→ o2 and o2 deletes what o1 inserts
ddeq(o1, o2) o1 ⊔ o2 and both delete the same character
isprecA(o1, o2) o1 7→ o2 and o1 ≺ o2
isprecB(o1, o2) o1 ⊔ o2 and o1 ≺ o2

breaking policy does not always work correctly. Its correct-
ness relies on the control procedure to ensure the sufficient
conditions under which it works, which is elaborated in [5].

4.3 Transformation Functions

Algorithm 3 [C] ERMerge(o, T): T ′

1: T ′ ← T ; hit← |T ′|
2: δ ← (o.type = ins) ? 1 : -1
3: for (i← |T ′| − 1; i ≥ 0; i−−) do
4: if ideq(T ′[i], o) then
5: remove T ′[i] from T ′; return T ′

6: else if isprecA(T ′[i], o) then
7: break // with hit = i+ 1
8: else
9: T ′[i].pos← T ′[i].pos+ δ

10: hit← i
11: end if
12: end for
13: insert o into T ′ at position hit
14: return T ′

ERMerge: Algorithm 3 is called when a new local oper-
ation o is generated, it adds o to the local operation buffer
T . Since o is generated in the current state, T 7→ o and o
can be directly appended to T . In order to keep T in the
≺ order, however, we swap o with the operations in T from
right to left until the appropriate position is found according
to the ≺ order. By swap, we exchange the execution order
of two contextually serialized operations. For every T [i] in

question, we have T [i] 7→ o. If T [i]
id
≡ o, the effect of o

cancels that of T [i] and neither of them will be included in
the resulting sequence. By function isprecA, if T [i] ≺ o, we
have found the right position to insert o and the swap process
stops. Otherwise, it means o ≺ T [i] and we need to swap
T [i] and o such that o′ 7→ T ′[i] holds in the result. Since
o ≺ T [i], the position of T [i] must be shifted to incorporate
the effect of o depending on its type (line 9).

serializedMerge: Algorithm 4 generalizes ERMerge to merge
two ordered sequences, sq1 and sq2, that are contextually
serialized (sq1 7→ sq2) and keeps the resulting sequence sq
ordered by the effects relation. Its working structurally re-
sembles that of the classical 2-way merge algorithm.

Let o1 be any operation in sq1 and o2 be any operation in
sq2. To decide their ≺ order, we transpose o1 to the end of

568

Algorithm 4 [S] serializedMerge(sq1, sq2) : sq

1: sq ← []; i← 0; j ← 0; ∆← 0
2: while (i < |sq2|) and (j < |sq1|) do
3: alias o1 = sq1[j]
4: alias o2 = sq2[i]
5: o2.pos← o2.pos−∆
6: if ideq(o1,o2) then
7: ∆← ∆− 1; i← i+ 1; j ← j + 1
8: else if isprecA(o1,o2) then
9: o1.pos← o1.pos+∆

10: sq ← sq · o1; j ← j + 1
11: else
12: sq ← sq · o2
13: δ ← (o2.type = ins) ? 1 : −1
14: ∆← ∆+ δ; i← i+ 1
15: end if
16: end while
17: for (;i < |sq2|;i++) do
18: sq ← sq · sq2[i]
19: end for
20: for (;j < |sq1|;j++) do
21: sq1[j].pos← sq1[j].pos+∆
22: sq ← sq · sq1[j]
23: end for
24: return sq

sq1 and transpose o2 to the head of sq2. Since sq1 is ordered
by relation ≺, swapping o1 and operations with effects fol-
lowing o1 will not affect the position of o1. Hence, after the
transposition, o1.pos remains as-is. However, swapping o2
and operations with effects preceding o2 does affect the po-
sition of o2. After the transposition, o2.pos will be adjusted
by ∆, which is the number of insertions that precede o2 sub-
tracting the number of deletions that precede o2. Because
sq1 7→ sq2, after the transposition, o1 7→ o2 holds.

Now o1 7→ o2 and we can determine their ≺ order. In the

case of o1
id
≡ o2 (line 6), o2 cancels the effect of o1 and none

of them will be included in the result sq. However, note that
∆ is adjusted for next operations in sq2 because this o2 is
a delete. By function isprecA(o1, o2), if o1 ≺ o2, we add
o1 into sq before o2, after including the effects of operations
in sq2 that precedes o1 by the ≺ order (line 9). Otherwise,
o2 will be added into sq before o1 (line 12); and ∆ will be
adjusted according to the type of this o2 (lines 13–14).

The two for-loops (lines 17-19 and lines 20-23) handle the
cases when sq2 and sq1 are still not exhausted, respectively.
Note that these two cases are mutually exclusive. Hence,
we either append the remainder of sq2 to sq, or append the
remainder of sq1 to sq after including the effects of sq2.

nwayMerge: Algorithm 5 is called by the server side of the
protocol (Algorithm 2) to perform n-way merge of n ordered
sequences that are contextually equivalent. The input is a list
of sequences. It calls the 2-way merge function mergeSQ
to merge two sequences at a time. For example, given 5
sequences sq0, sq1, sq2, sq3, sq4, it first merges sq3 into sq0

Algorithm 5 [S] nwayMerge(sqlist) : sq

1: L← sqlist; N ← |L|
2: while N > 1 do
3: N,M ← ⌈N

2
⌉, ⌊N

2
⌋

4: for (i← 0; i < M ; i++) do
5: L[i]← mergeSQ(L[i], L[N+i])
6: end for
7: end while
8: return (N==1) ? L[0] : []

and sq4 into sq1. Then, with new sequences sq0, sq1, sq2,
it merges sq2 into sq0. Finally, in the remaining sq0, sq1,
it merges sq1 into sq0 and returns resulting sq0. Each pass
roughly halves the number of sequences for the next pass.

Algorithm 6 [S] mergeSQ(sq1, sq2) : sq

1: sq ← []; i← 0; j ← 0; ∆1 ← 0; ∆2 ← 0
2: while (i < |sq2|) and (j < |sq1|) do
3: alias o1 = sq1[j]; o1.pos← o1.pos−∆1

4: alias o2 = sq2[i]; o2.pos← o2.pos−∆2

5: if ddeq(o1,o2) then
6: o1.pos← o1.pos+∆2

7: o1.ids← o1.ids ∪ o2.ids
8: sq ← sq · o1; i← i+ 1; j ← j + 1
9: else if isprecB(o1,o2) then

10: o1.pos← o1.pos+∆2

11: sq ← sq · o1
12: δ ← (o1.type = ins) ? 1 : −1
13: ∆1 ← ∆1 + δ; j ← j + 1
14: else
15: o2.pos← o2.pos+∆1

16: sq ← sq · o2
17: δ ← (o2.type = ins) ? 1 : −1
18: ∆2 ← ∆2 + δ; i← i+ 1
19: end if
20: end while
21: for (;i < |sq2|;i++) do
22: sq2[i].pos← sq2[i].pos+∆1

23: sq ← sq · sq2[i]
24: end for
25: for (;j < |sq1|;j++) do
26: sq1[j].pos← sq1[j].pos+∆2

27: sq ← sq · sq1[j]
28: end for
29: return sq

mergeSQ: Given two ordered sequences sq1 and sq2, where
sq1⊔sq2, Algorithm 6 merges them into an ordered sequence
sq. Similarly to serializedMerge, we consider any operation
o1 in sq1 and any operation o2 in sq2. To determine their
≺ order, we first ensure o1 ⊔ o2 by transposing o1 and o2
to the heads of sq1 and sq2, respectively. The transposition
requires to exclude the effects of those operations in sq1 or
sq2 that precede o1 or o2 by the ≺ order (lines 3–4).

Given that o1 ⊔ o2, if o1
dd
≡ o2, meaning that they delete the

same character, we combine o1 and o2 into one operation
whose ids is the union of o1.ids and o2.ids (line 6–8).

569

Now since o1 ⊔ o2, we call function isprecB(o1, o2) to de-
termine their ≺ order. If o1 ≺ o2, we add o1 before o2 in
the result sq, after shifting o1.pos to include the effects of
operations in sq2 that precede o1 by the ≺ order (line 10 to
13). Otherwise, if o2 ≺ o1, similarly o2 is added before o1
after including the effects of operations in sq1 that precede
o2 by the ≺ order (lines 15–18).

Algorithm 7 [S] extractRemotes(sq, j) : sq′

1: sq′ ← []
2: for (i← 0; i < |sq|; i++) do
3: if (j 6= sq[i].id) or (j /∈ sq[i].ids) then
4: sq′ ← sq′ · sq[i]
5: end if
6: end for
7: return sq′

extractRemotes: Algorithm 7 is called by the server to ex-
tract remote operations on behalf of a given client j. The
input sequence sq is a result of the n-way merge algorithm,
which includes operations from all sites that are generated
during the previous server interval τs. Consider that the cur-
rent buffer Tj of client j has not been synced with the server
yet. Some of those operations in sq are generated by client
j, which happen before Tj , while the others are by other
clients, which are concurrent with Tj . The purpose is to ex-
tract a subsequence sq′ from the ordered sequence sq such
that sq′ is also ordered and contextually equivalent with Tj .

What we need to do is to transpose sq into two ordered sub-
sequences sqh and sqc such that sqh 7→ sqc, where opera-
tions in sqh are all generated by client j and sqc by other
clients. Because sqh 7→ Tj , then sqc ⊔ Tj must hold and
hence sqc is what we want. Now the problem is reduced
to finding operations in sq that are generated by client j,
which is solved as follows: We scan sq from left to right,
for each sq[i], if it is not generated by client j, append it to
sqc; otherwise, transpose operation sq[i] with sequence sqc,
yielding sq[i]′, and then append sq[i]′ to sqh. This would
take O(|sq|2) time. However, considering that sq is already
ordered by relation ≺, transposing sq[i] and sqc does not
affect operations in sqc. Also considering that we do not re-
ally need sqh, we can just pick from sq those not generated
by client j and discard those that are. This is exactly how
Algorithm 7 works, with complexity O(|sq|).

ITSQ: Given two ordered sequences sq1 and sq2, where
sq1 ⊔ sq2, Algorithm 8 inclusively transforms sq1 with sq2,
yielding sq′

1
such that sq2 7→ sq′

1
. Similarly to Algorithm

6, for any operation o1 in sq1 and any operation o2 in sq2,
we transpose them to the heads of the two sequences, re-
spectively. Then o1 ⊔ o2 holds and we can determine their
≺ order by function isprecB(o1, o2). Note that ITSQ is for
inclusion transformation (IT) [13] rather than merging. That
is, for example, when o1 is added into the resulting sequence
sq′

1
, it will have incorporated the effects of all operations in

sq2 that precede o1 by the≺ order. As a result, o1 is included
in sq′

1
possibly with its position value shifted by those oper-

ations in sq2; however, none of the operations of sq2 is in-

Algorithm 8 [C] ITSQ(sq1, sq2) : sq
′
1

1: sq′
1
← sq1; i← 0; j ← 0; ∆1 ← 0; ∆2 ← 0

2: while (i < |sq2|) and (j < |sq1|) do
3: alias o1 = sq1[j]; o1.pos← o1.pos−∆1

4: alias o2 = sq2[i]; o2.pos← o2.pos−∆2

5: if ddeq(o1,o2) then
6: sq′

1
[j]← φ; i← i+ 1; j ← j + 1

7: else if isprecB(o1,o2) then
8: sq′

1
[j].pos← sq′

1
[j].pos+∆2

9: δ ← (sq1[j].type = ins) ? 1 : −1
10: ∆1 ← ∆1 + δ; j ← j + 1
11: else
12: δ ← (sq2[i].type = ins) ? 1 : −1
13: ∆2 ← ∆2 + δ; i← i+ 1
14: end if
15: end while
16: for (;j < |sq1|;j++) do
17: sq′

1
[j].pos← sq′

1
[j].pos+∆2

18: end for
19: remove the φ operation from sq′

1

20: return sq′
1

cluded into sq′
1
. In the case that o1

dd
≡ o2 (line 5), o1 will

be transformed into an identity operation φ and be removed
from sq′

1
(line 19) since its effect is already in sq2.

5. COMPLEXITIES AND EXPERIMENTS

We choose not to experimentally compare the performance
with other OT works for two reasons: First, fully implement-
ing other works is very difficult, if not impossible. Some
would require substantial extensions to achieve the same prop-
erties, while some others are not published with full details.
Voluntarily offering such extensions and details could be an
error-prone and unwelcome effort itself. Secondly, our pur-
pose is to measure the performance of our own work, not to
claim that our work performs better than the others.

5.1 Asymptotic Complexities

The space complexity of client j is linear in the size of the lo-
cal operation buffer and the remote sequence received from
the server at each sync, i.e., O(|Tj |+ |sq

′
j |). The space com-

plexity of the server is linear in the size of the buffers allo-
cated for all n clients, i.e., O(Σn

j=1
(|RBj | + |SBj |)). The

time complexities of all the transformation functions are lin-
ear in the size of the input sequence(s). The complexity of
nwayMerge is O(log n·Σn

j=1
|RBj |), which is roughly linear

in the size of the receiving buffers when n is not too large.

5.2 Performance Experiments

Rationale: As shown in Figure 2, the runtime performance
of TIPS has a client side and a server side. The server-side
performance has two aspects: (1) The time to process a client
request: (a) The time for extractRemotes(SBj , j) to serve
CHK. (b) The time for serializedMerge(RBj , T

′
j) to merge a

client sequence T ′
j to its receiving buffer RBj . (2) The time

to synthesize all the RB’s accumulated in one server inter-
val, including the time for performing nwayMerge (RB1,

570

. . . , RBn) and n calls to algorithm serializedMerge (SBj ,
msq), where msq is the result of nwayMerge.

The client-side performance has two aspects: (1) The user
perceived local response time, which is the time for ER-
Merge (o, Tj) given a locally generated operation o and local
buffer Tj . (2) The client perceived system response time,
i.e., the time to sync with the server, which consists of two
HTTP requests (in the background): (a) One to request for
the remote sequence sq′j , which includes an HTTP RTT, the
server time for extractRemotes(SBj , j) and the client time
for two symmetric ITSQ(sq′j , Tj) and ITSQ(Tj , sq

′
j). (b)

The other request to send T ′
j to the server, which includes

a RTT and the server time for serializedMerge(RBj , T
′
j).

The HTTP RTT is mainly contributed by the Web and the
networking infrastructure. Hence we only measure contribu-
tions by our OT work, as asterisked in Algorithms 1 and 2.

Setup: From the above analyses, the performance of TIPS
ultimately depends on the average size of each Tj and the
number of clients n. In a (near-)realtime collaborative edit-
ing application, a distributed group of users concurrently
modify a shared document. We can assume that the client
interval τj and server interval τs are short and hence the
number of operations generated by a user in τj is small. We
can also assume that the number of clients is not too large.
Hence we set the two parameters, |Tj | and n, both to range
from 10 to 100. While these numbers are large enough to
show the performance trends, we expect that the number of
active participants in a typical session be 10 or less.

In all the experiments, we generate the operations as fol-
lows: At one extreme, when |Tj |=100 and n=100, there are
10,000 operations in total. Hence we use a shared document
with an initial size of 1,000,000 characters. The first opera-
tion is generated with its position uniformly distributed over
the current document, then the second operation is generated
similarly after the first one is executed, and so forth. The ra-
tio of insertions is 50%. In addition, we avoid generating
operations that have the same effect characters so that no
operations will be combined or removed from the sequences
during transformation. Each experiment is repeated 10 times
and the average execution time is recorded.

Client Side Experiments: The client side experiments are
performed on a laptop with a 1.50 GHz Intel Pentium M pro-
cessor and 1 GB DDR memory running Windows XP Pro-
fessional. The client algorithms (e.g., ERMerge and ITSQ)
are implemented using Javascript. The experiments are run
on the Google Chrome browser v5.0.375.99.

Even when |T | goes up to 10,000, the average execution time
of ERMerge(o, T) only takes 0.6ms. Some selected data
points of the symmetric ITSQ in Algorithm 1 are shown in
Table 2. Note that the 0ms’s should be read as “negligible”.

Server Side Experiments: We use a Gentoo Linux server
(kernel 2.6.30) with a 2.2 GHz Dual Core AMD Opteron 275
Processor and 2 GB Registered ECC memory. The server

Table 2. Client time to do symmetric ITSQ

n |T | |sq| ITSQ(sq,T) ITSQ(T,sq)
10 10 90 0.8ms 0ms
10 50 450 3ms 0ms
10 100 900 8.8ms 0.2ms

100 10 990 9ms 0.8ms
100 50 4950 12ms 0.8ms
100 100 9900 18.2ms 1.2ms

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 10 20 30 40 50 60 70 80 90 100

T
im

e
(m

s)
The number of clients n

Length of T
10
20
30
40
50
60
70
80
90

100
Trend

Figure 3. Server time to merge n sequences each of size |T |.

side algorithms (e.g., extractRemotes, serializedMerge and
nwayMerge) are implemented using C++ and compiled by
g++ v4.3.4 with option -O3.

When |sq| = 10, 000, extractRemotes(sq, j) takes 6ms to
extract the 9,900 remote operations for client j. Function
serializedMerge is used for merging Tj into RBj and for
merging msq into SBj . In the former, the two input se-
quences are normally small and the time is negligible. In the
latter, the overhead is negligible unless SBj is huge. When
client j crashes or τj ≫ τs and all other clients are active,
SBj builds up and it could take a few hundred milliseconds.
However, as will be explained, the cost can be eliminated
by slightly adjusting the protocol. The measured time for
nwayMerge under different n and |T | is plotted in Figure 3.

5.3 Discussions: Results and Next Steps

Client Side: The user-perceived local response delay is gen-
erally negligible because it takes less than 1ms even when
merging a local operation into a very large T . Even if a
system has 100 concurrent clients each submitting 100 oper-
ations every interval, the total transformation overheads are
below 20ms, which are also negligible. The client-perceived
sync delay is dominated by the two HTTP RTTs.

Server Side: The nwayMerge dominates the server side com-
putation. The experimental data shows that the performance
is good enough to support near-realtime Web 2.0 applica-
tions. In such applications, |T | is usually small (say 10)
and clients may sync around the same time. Then, even
with 100 active concurrent clients, it takes only 11ms to do
nwayMerge, which are no longer than a typical HTTP RTT.

571

Further Considerations: In practical situations, clients may
submit sequences with different lengths to the server. Algo-
rithm nwayMerge can be further optimized, e.g., by merging
shorter sequences first in each iteration.

On a more powerful server, the nwayMerge algorithm could
be parallelized. Similarly, the n calls to serializedMerge can
also be parallelized. Hence it is reasonable to only count the
serializedMerge time once in our experiments.

In Algorithm 2, the call to extractRemotes(SBj , j) could be
moved to right before serializedMerge(SBj ,msq) such that,
by extractRemotes(msq,j), those not generated by j are ex-
tracted from msq and merged into SBj . Then SBj can be
directly sent to client j in response to its CHK request.

Some of the computation could be offloaded from the server.
In particular, when SBj grows long, a new msq can be sim-
ply appended to SBj to avoid the costs of serializedMerge.
The sequences can be compressed and transmitted to the
client and transformed with the local Tj one by one. Then
extractRemotes can be done on the client or the server.

The above experiments focus on near-realtime collaboration.
As it goes asynchronous, the participants will less likely
sync with the server around the same time. Then each time
nwayMerge effectively only needs to merge few sequences
in time linear in their total size. Prior work [9] provides com-
plementary performance studies for asynchronous cases.

6. CONCLUSIONS

This paper proposes TIPS, a novel OT-based sync protocol
for Web 2.0 applications, with three major contributions:
1. TIPS ensures data convergence as well as the right or-

der of objects in a client/server architecture. These three
properties are not achieved together in previous OT works,
to the best of our knowledge. Its correctness is based
on a recent theoretical framework and has been formally
proven, which will be presented in the journal version.

2. TIPS adapts OT for Web-based collaborative apps. Clients
sync with the server by time intervals and any client can
join, leave and sync independently of each other, a prop-
erty not seen in previous OT works. The protocol strictly
follows the standard request/response paradigm in HTTP
and is easy to deploy with current Web technologies.

3. The time complexity of TIPS is roughly linear in the num-
ber of operations generated by all clients during one server
interval and independent of the operation history, whereas
all other OT works are dependent on the history. The
protocol is efficient for supporting a spectrum of near-
realtime to asynchronous collaborative editing tasks.

ACKNOWLEDGMENTS

The authors thank the expert referees for their constructive
reviews. The work was supported in part by NSF of China
(NSFC) under Grants 60736020 and 60803118, and the Shang-
hai Leading Academic Discipline Project under Grant B114.

REFERENCES

1. R. Bentley, T. Horstmann, and J. Trevor. The World
Wide Web as enabling technology for CSCW: The case
of BSCW. JCSCW, 6(2-3):111–134, June 1997.

2. C. A. Ellis and S. J. Gibbs. Concurrency control in
groupware systems. In SIGMOD 1989, pages 399–407.

3. D. Li and M. Anand. MaJaB: Improving resource
management for web-based applications on mobile
devices. In MobiSys 2009, pages 95–108.

4. D. Li and R. Li. Preserving operation effects relation in
group editors. In CSCW 2004, pages 457–466.

5. D. Li and R. Li. An admissibility-based operational
transformation framework for collaborative editing
systems. Computer Supported Cooperative Work,
19(1):1–43, 2010.

6. R. Li, D. Li, and C. Sun. A time interval based
consistency control algorithm for interactive groupware
applications. ICPADS 2004, pages 429–436.

7. D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping.
High-latency, low-bandwidth windowing in the jupiter
collaboration system. In UIST 1995, pages 111–120.

8. B. Shao, D. Li, and N. Gu. An algorithm for selective
undo of any operation in collaborative applications. In
GROUP 2010, pages 131–140.

9. B. Shao, D. Li, and N. Gu. A sequence transformation
algorithm for supporting cooperative work on mobile
devices. In CSCW 2010, pages 159–168.

10. H. Shen and C. Sun. Flexible notification for
collaborative systems. In CSCW 2002, pages 77–86.

11. M. Suleiman, M. Cart, and J. Ferrié. Concurrent
operations in a distributed and mobile collaborative
environment. In ICDE 1998, pages 36–45.

12. C. Sun and W. Cai. Capturing causality by compressed
vector clock in real-time group editors. IPDPS 2002,
pages 59–66.

13. C. Sun and C. Ellis. Operational transformation in
real-time group editors: issues, algorithms, and
achievements. In CSCW 1998, pages 59–68.

14. C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen.
Achieving convergence, causality-preservation, and
intention-preservation in real-time cooperative editing
systems. ACM ToCHI, 5(1):63–108, Mar. 1998.

15. C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai.
Transparent adaptation of single-user applications for
multi-user real-time collaboration. ACM ToCHI,
13(4):531–582, 2006.

16. D. Sun and C. Sun. Context-based operational
transformation in distributed collaborative editing
systems. IEEE TPDS 2009, 20(10):1454–1470.

17. N. Vidot, M. Cart, J. Ferrié, and M. Suleiman. Copies
convergence in a distributed real-time collaborative
environment. In CSCW 2000, pages 171–180.

572

